6533b82cfe1ef96bd12901fa

RESEARCH PRODUCT

Tests of quark-hadron duality in tau-decays

Cesareo A. DominguezK. SchilcherK. SchilcherL. A. HernandezH. SpiesbergerH. Spiesberger

subject

QuarkNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryHadronLinearity of integrationGeneral Physics and AstronomyDuality (optimization)FOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)High Energy Physics - Lattice0103 physical sciences010306 general physicsPseudovectorPhysicsQuantum chromodynamics010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyAstronomy and AstrophysicsGluon condensateHigh Energy Physics - PhenomenologyHigh Energy Physics::Experiment

description

An exhaustive number of QCD finite energy sum rules for $\tau$-decay together with the latest updated ALEPH data is used to test the assumption of global duality. Typical checks are the absence of the dimension $d=2$ condensate, the equality of the gluon condensate extracted from vector or axial vector spectral functions, the Weinberg sum rules, the chiral condensates of dimensions $d=6$ and $d=8$, as well as the extraction of some low-energy parameters of chiral perturbation theory. Suitable pinched linear integration kernels are introduced in the sum rules in order to suppress potential quark-hadron duality violations and experimental errors. We find no compelling indications of duality violations in hadronic $\tau$-decay in the kinematic region above $s\simeq2.2$ GeV$^{2}$ for these kernels.

10.1142/s0217732316300366http://arxiv.org/abs/1607.02048