6533b82dfe1ef96bd12907b6
RESEARCH PRODUCT
Determination of the Pseudoscalar Decay Constant fDs+ via Ds+→μ+νμ
M. RichterZ. NingS. J. ZhaoJ. L. ZhangJ. LibbyM. H. GuYaquan FangA. PitkaH. Y. ShengC. X. YuW. G. LiQ. J. XuF. De MoriY. K. SunShan JinJ. C. ChenXuanhong LouI. UmanQ. P. JiS. SpataroX. P. XuK. GoetzenS. LeiberNasser Kalantar-nayestanakiK. SchoenningQ. Y. LiB. S. ZouB. ZhengR. G. PingY. H. ZhengCong-feng QiaoLei LiC. Morales MoralesS. NakhoulNiklaus BergerG. F. CaoN. Yu. MuchnoiMeng WangX. Y. ZhouH. B. LiA. G. DenigC. L. LuoM. BertaniX. XiaQ. ZhouA. Q. GuoC. W. WangG. RongQ. A. MalikG. MezzadriX. S. KangY. H. ZhangBingxuan LiuX D ShiY. J. MaoZ. HaddadiX. K. ZhouW. P. WangC. C. ZhangB. ZhongL. B. GuoH. X. YangZ. H. QinL. YangI. GarziaFang LiuP. LarinYao ZhangG. LiX. F. WangL. M. GuL. P. ZhouQ. M. MaX. Y. JiangI. DenysenkoW. C. YanX. L. GaoB. GarillonHuihui LiuJ. G. MesschendorpJ. P. DaiZ. T. SunY. M. MaZ. Y. WangA. GilmanC. D. FuA. MustafaY. T. TanC. DongH. MuramatsuA. N. ZhuL. J. WuS. QianQ. AnJialun PingZ. P. MaoQiunan XuC. Q. FengZ. Y. DengB. Y. ZhangY. YuanY. S. ZhuYu ZhangS. SosioUlrich WiednerTao ZhangM. KornicerG. Y. TangW. GradlM. RipkaD. Y. WangK. ZhangX. Y. ZhangJ. FangTao LiXingguo LiJoachim PetterssonKai LiuQ. LiuR. FarinelliZ. GaoM. QiH. J. YangM. LaraJ. B. LiuY. BanP. WeidenkaffF. H. HeinsiusR. KliemtJie ZhaoD. X. LinM. M. MaY. J. MoAlexey ZhemchugovH. M. HuXu ShanL. L. MaL. GongX. TangA. MangoniA. GuskovA. AmorosoCh. RosnerS. P. WenM. G. ZhaoY. H. YangX. X. MaBibo KeJ. ZhuJ. C. LiY. J. SunYifan YangA. YuncuM. RoloW. B. YanS. B. LiuY. ZhangA. DbeyssiM. N. AchasovL. ZhangZ. G. WangH. Y. ZhangY. P. LuK. J. ZhuB. X. YuZhi ZengX. R. ZhouJ. ZhuangH. L. MaCheng LiHaiwen LiuS. PacettiY. NefedovJ. MinM. AlekseevF. CossioK. J. ZhuG. CibinettoD. M. LiY. H. XieJ. PellegrinoA. JulinM. X. LuoG. F. XuI. B. NikolaevG. F. ChenH. LiangB. KopfKe LiK. L. HeD. V. DedovichT. Y. QiJ. Y. ZhangM. Y. DongM. Z. WangY. PanJimin ZhaoP. L. LiM. PelizaeusYunlong ZhangM. MaggioraLing ZhaoH. B. LiuJ. H. ZouY. X. XiaS. H. ZhuQ. P. JiH. L. LiuJ. ChaiD. Y. LiuD. BettoniCui LiH. S. ChenW. M. SongS. S. SunM. FritschX. B. JiM. TiemensJ. B. JiaoLiqing XuX. Y. ShenP. PatteriR. PolingJianping ZhengS. ZhuX. S. QinG. X. SunJ. V. BennettY. DingJianhao ZhangJ. H. YinX. Y. SongB. J. LiuT. J. MinLei ZhaoR. E. MitchellY. K. HengKe LiuH. L. DaiIgor BoykoM. DestefanisW. KühnZ. L. HouZ. Y. YouZ. A. ZhuJ. J. XuT. WeberL. KochA. KhoukazZ. JiaoFu-hu LiuD. H. ZhangA. CalcaterraZ. G. ZhaoS. FeganH. J. LuJ. G. LuC. P. ShenR. Baldini FerroliX. LiuH. R. QiJ. S. HuangM. ShaoY. T. GuC. X. LiuL. Z. LiaoSerkant Ali CetinC. F. RedmerJ. D. LuX. N. LiHaiping PengKe WangF. E. MaasT. HuP. F. DuanXiao-rui LyuH. H. ZhangGianfranco MorelloFenfen AnB. L. WangT. C. ZhaoJ. F. HuC. SchnierZ. J. SunO. BakinaJun-yi ZhangY. P. GuoZhiyong ZhangC. Z. YuanP. X. ShenZ. WuZ. P. ZhangZhiqing ZhangX. T. HuangP. L. ChenGuangshun HuangL. YanD. W. BennettM. KuessnerZujian WangV. PrasadS. HanY. BaiG. A. ChelkovL. H. WuM. SavrieYi JinY. G. GaoJ. W. LiL. XiaY. J. XiaoC. SowaY. B. ZhaoG. S. VarnerJ. DongZ. X. MengX. A. XiongA. A. ZafarY. Q. WangKrisztian PetersK. H. RashidY. T. LiangS. NisarS. J. ChenT. KhanC. J. TangY. HuY. P. LuZ. A. LiuA. SarantsevD. H. WeiP. R. LiP. R. LiJ. S. LangeD. XiaoF. FeldbauerX. L. JiZ. L. HuangFeng LiuS. L. YangM. AblikimY. G. XieX. H. MoL. S. WangS. X. DuZ. L. DouM. H. YeX. N. MaA. ZalloY. FuL. L. WangH. CaiI. TapanG. R. LiaoB. WangY. H. YanM. H. YeJ. W. ZhaoY. C. ZhuL. Y. DongM. KavatsyukW. J. ZhengF. NerlingB. X. ZhangT. HeldM. AlbrechtW. D. LiB. T. TsedneeM. KuemmelMatthew Glenn KurthW. ShanDan WangJ. F. SunMagnus WolkeS. MarcelloY. F. LiangY. ZengS. LussoD. P. JinY. B. ChenXiaofeng ZhuJ. Z. ZhangJ. J. SongL. SunN. QinXiaozhong HuangZongyuan WangS. F. ZhangAndrzej KupscM. L. ChenZhiqing LiuT. HoltmannT. JohanssonY. F. WangJ. F. ChangJ. Y. LiuQ. OuyangY. F. WangT. HussainO. B. KolcuF. LiQ. GaoY. N. GaoX. CaiL. LavezziX. Y. MaS. S. FangW. X. GongF. C. MaX. Q. HaoMichael PapenbrockF. YanJ. Z. FanY. B. LiuX. H. SunS. AhmedHuanhuan LiuY. X. YangZ. J. XiaoP. KieseJ. F. QiuG. FeliciL. FavaS. L. OlsenR. A. BriereX. S. JiangQ. ZhaoY. Z. SunXiang ZhouC. X. LinYang ZhangH. J. LiO. CakirGang ZhaoQ. L. XiuJ. Q. ZhangS. L. NiuF. Y. LiX. Q. LiY. F. LongP. L. WangM. GrecoX. L. LuoP. L. WangK. BegzsurenMuhammad IrshadF. A. HarrisF. BianchiW. L. ChangK. Y. LiuH. LeithoffR. P. GuoZ. B. LiW. Ikegami AnderssonD. Y. Liusubject
Quantum chromodynamicsPhysicsPseudoscalarCrystallographyBranching fractionCabibbo–Kobayashi–Maskawa matrixElectron–positron annihilationLattice (order)0103 physical sciencesGeneral Physics and AstronomyExponential decay010306 general physics01 natural sciencesdescription
Using a 3.19 fb^{-1} data sample collected at an e^{+}e^{-} center-of-mass energy of E_{cm}=4.178 GeV with the BESIII detector, we measure the branching fraction of the leptonic decay D_{s}^{+}→μ^{+}ν_{μ} to be B_{D_{s}^{+}→μ^{+}ν_{μ}}=(5.49±0.16_{stat}±0.15_{syst})×10^{-3}. Combining our branching fraction with the masses of the D_{s}^{+} and μ^{+} and the lifetime of the D_{s}^{+}, we determine f_{D_{s}^{+}}|V_{cs}|=246.2±3.6_{stat}±3.5_{syst} MeV. Using the c→s quark mixing matrix element |V_{cs}| determined from a global standard model fit, we evaluate the D_{s}^{+} decay constant f_{D_{s}^{+}}=252.9±3.7_{stat}±3.6_{syst} MeV. Alternatively, using the value of f_{D_{s}^{+}} calculated by lattice quantum chromodynamics, we find |V_{cs}|=0.985±0.014_{stat}±0.014_{syst}. These values of B_{D_{s}^{+}→μ^{+}ν_{μ}}, f_{D_{s}^{+}}|V_{cs}|, f_{D_{s}^{+}} and |V_{cs}| are each the most precise results to date.
year | journal | country | edition | language |
---|---|---|---|---|
2019-02-22 | Physical Review Letters |