6533b82dfe1ef96bd1290846

RESEARCH PRODUCT

Molecular dynamics and reverse Monte Carlo modeling of scheelite-type AWO4(A = Ca, Sr, Ba) WL3-edge EXAFS spectra

Alexei KuzminJanis TimoshenkoMatthias BauerAleksandr Kalinko

subject

Materials scienceExtended X-ray absorption fine structureAb initio02 engineering and technologyReverse Monte Carlo010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesMolecular physicsAtomic and Molecular Physics and OpticsSpectral line0104 chemical scienceschemistry.chemical_compoundMolecular dynamicsTungstatechemistryScheelite0210 nano-technologyAnisotropyMathematical Physics

description

Classical molecular dynamics (MD) and reverse Monte Carlo methods coupled with ab initio multiple-scattering extended x-ray absorption fine structure (EXAFS) calculations were used for modeling of scheelite-type AWO4 (A = Ca, Sr, Ba) W L 3-edge EXAFS spectra. The two theoretical approaches are complementary and allowed us to perform analysis of full EXAFS spectra. Both methods reproduce well the structure and dynamics of tungstates in the outer coordination shells, however the classical MD simulations underestimate the W–O bond MSRD due to a neglect of quantum zero-point-motion. The thermal vibration amplitudes, correlation effects and anisotropy of the tungstate structure were also estimated.

https://doi.org/10.1088/0031-8949/91/11/114001