6533b82dfe1ef96bd1290946

RESEARCH PRODUCT

Polynomial Identities of Algebras of Small Dimension

Mikhail ZaicevAntonino GiambrunoS. Mishchenko

subject

CombinatoricsDiscrete mathematicsSequencePolynomialAlgebra and Number TheoryBounded functionAssociative algebraLie algebraAlgebra representationCodimensionpolynomial identity non associativeReal numberMathematics

description

It is well known that given an associative algebra or a Lie algebra A, its codimension sequence c n (A) is either polynomially bounded or grows at least as fast as 2 n . In [2] we proved that for a finite dimensional (in general nonassociative) algebra A, dim A = d, the sequence c n (A) is also polynomially bounded or c n (A) ≥ a n asymptotically, for some real number a > 1 which might be less than 2. Nevertheless, for d = 2, we may take a = 2. Here we prove that for d = 3 the same conclusion holds. We also construct a five-dimensional algebra A with c n (A) < 2 n .

https://doi.org/10.1080/00927870802226221