6533b82dfe1ef96bd12909fb
RESEARCH PRODUCT
Inelastic neutron scattering due to acoustic vibrations confined in nanoparticles: theory and experiment
D. AymesAnne-laure PapaDaniel B. MurrayNadine MillotSaviot LucienCatherine PighiniStéphane RolsCaleb H. NettingAlain Mermetsubject
Condensed Matter - Materials ScienceQuasielastic scatteringMaterials sciencePhonon scatteringScattering[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesPhysics::Optics02 engineering and technologyNeutron scatteringInelastic scattering021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesInelastic neutron scattering3. Good healthElectronic Optical and Magnetic MaterialsX-ray Raman scattering0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Scattering theoryAtomic physics010306 general physics0210 nano-technologydescription
The inelastic scattering of neutrons by nanoparticles due to acoustic vibrational modes (energy below 10 meV) confined in nanoparticles is calculated using the Zemach-Glauber formalism. Such vibrational modes are commonly observed by light scattering techniques (Brillouin or low-frequency Raman scattering). We also report high resolution inelastic neutron scattering measurements for anatase TiO2 nanoparticles in a loose powder. Factors enabling the observation of such vibrations are discussed. These include a narrow nanoparticle size distribution which minimizes inhomogeneous broadening of the spectrum and the presence of hydrogen atoms oscillating with the nanoparticle surfaces which enhances the number of scattered neutrons.
year | journal | country | edition | language |
---|---|---|---|---|
2008-11-20 |