6533b82dfe1ef96bd1290a11

RESEARCH PRODUCT

A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase

Carmen Blanco-aparicioJosema TorresRafael Pulido

subject

Cytoplasmanimal structuresRecombinant Fusion ProteinsCèl·lulesAmino Acid MotifsNerve Tissue ProteinsProtein tyrosine phosphataseSH2 domainTransfectionenvironment and public healthModels Biologicalp38 Mitogen-Activated Protein KinasesReceptor tyrosine kinaseSH3 domainCell LinePhosphoserinetyrosine phosphatasesAnimalsHumansProtein phosphorylationPKAReceptor-Like Protein Tyrosine Phosphatases Class 7PhosphorylationPTP-SLCell NucleusMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3biologyBrief ReportIntracellular Signaling Peptides and ProteinsBiological TransportCell BiologyProtein Tyrosine Phosphatases Non-ReceptorCyclic AMP-Dependent Protein KinasesEnzyme Activationenzymes and coenzymes (carbohydrates)MAP kinasesBiochemistryMitogen-activated protein kinaseCOS CellsMutationbiology.proteinPhosphorylationMitogen-Activated Protein KinasesProtein Tyrosine PhosphatasesEnzimssignal transductionProto-oncogene tyrosine-protein kinase Src

description

Protein tyrosine phosphatase PTP-SL retains mitogen-activated protein (MAP) kinases in the cytoplasm in an inactive form by association through a kinase interaction motif (KIM) and tyrosine dephosphorylation. The related tyrosine phosphatases PTP-SL and STEP were phosphorylated by the cAMP-dependent protein kinase A (PKA). The PKA phosphorylation site on PTP-SL was identified as the Ser231 residue, located within the KIM. Upon phosphorylation of Ser231, PTP-SL binding and tyrosine dephosphorylation of the MAP kinases extracellular signal–regulated kinase (ERK)1/2 and p38α were impaired. Furthermore, treatment of COS-7 cells with PKA activators, or overexpression of the Cα catalytic subunit of PKA, inhibited the cytoplasmic retention of ERK2 and p38α by wild-type PTP-SL, but not by a PTP-SL S231A mutant. These findings support the existence of a novel mechanism by which PKA may regulate the activation and translocation to the nucleus of MAP kinases.

10.1083/jcb.147.6.1129https://hdl.handle.net/10550/84390