6533b82dfe1ef96bd1291385

RESEARCH PRODUCT

A 1D coupled Schrödinger drift-diffusion model including collisions

Pierre DegondN. Ben AbdallahA. El AyyadiM. Baro

subject

Physics and Astronomy (miscellaneous)Quantum dynamics34L40Pauli master equationinterface conditionsQuantum mechanicsPrincipal quantum numberQuantum operation65Z05quantum-classical couplingAmplitude damping channelscattering states82D37PhysicsNumerical Analysis82C70Applied Mathematics34L30Quantum numberComputer Science Applications34L25Computational MathematicsModeling and SimulationQuantum process78A35Schroedinger equationdrift-diffusionQuantum algorithmQuantum dissipation

description

We consider a one-dimensional coupled stationary Schroedinger drift-diffusion model for quantum semiconductor device simulations. The device domain is decomposed into a part with large quantum effects (quantum zone) and a part where quantum effects are negligible (classical zone). We give boundary conditions at the classic-quantum interface which are current preserving. Collisions within the quantum zone are introduced via a Pauli master equation. To illustrate the validity we apply the model to three resonant tunneling diodes.

https://dx.doi.org/10.20347/wias.preprint.923