6533b82dfe1ef96bd1291419

RESEARCH PRODUCT

Impeller optimization in crossflow hydraulic turbines

Marwa HannachiAntonio PantanoTullio TucciarelliMarco SinagraCalogero PiconeCostanza AricòZied Driss

subject

Optimal designenergy harvestinglcsh:Hydraulic engineeringComputer science020209 energyenergy recoveryGeography Planning and Development0207 environmental engineeringMechanical engineering02 engineering and technologyAquatic ScienceComputational fluid dynamicsCurvatureBiochemistryTurbineSettore ICAR/01 - IdraulicaImpellerlcsh:Water supply for domestic and industrial purposeslcsh:TC1-978pressure control0202 electrical engineering electronic engineering information engineeringMicro-hydropower020701 environmental engineeringWater Science and Technologybanki turbinelcsh:TD201-500Water transportPressure controlbusiness.industryFinite element methodwater distribution networkbusiness

description

Crossflow turbines represent a valuable choice for energy recovery in aqueducts, due to their constructive simplicity and good efficiency under variable head jump conditions. Several experimental and numerical studies concerning the optimal design of crossflow hydraulic turbines have already been proposed, but all of them assume that structural safety is fully compatible with the sought after geometry. We show first, with reference to a specific study case, that the geometry of the most efficient impeller would lead shortly, using blades with a traditional circular profile made with standard material, to their mechanical failure. A methodology for fully coupled fluid dynamic and mechanical optimization of the blade cross-section is then proposed. The methodology assumes a linear variation of the curvature of the blade external surface, along with an iterative use of two-dimensional (2D) computational fluid dynamic (CFD) and 3D structural finite element method (FEM) simulations. The proposed methodology was applied to the design of a power recovery system (PRS) turbine already installed in an operating water transport network and was finally validated with a fully 3D CFD simulation coupled with a 3D FEM structural analysis of the entire impeller.

10.3390/w13030313http://hdl.handle.net/10447/486320