6533b82dfe1ef96bd129152e
RESEARCH PRODUCT
Inducing characters and nilpotent subgroups
Gabriel Navarrosubject
Discrete mathematicsFinite groupPure mathematicsNilpotentApplied MathematicsGeneral MathematicsMathematicsdescription
If H H is a subgroup of a finite group G G and γ ∈ Irr ( H ) \gamma \in \operatorname {Irr}(H) induces irreducibly up to G G , we prove that, under certain odd hypothesis, F ( G ) F ( H ) \mathbf {F}(G) \mathbf {F}(H) is a nilpotent subgroup of G G .
year | journal | country | edition | language |
---|---|---|---|---|
1996-01-01 |