6533b82dfe1ef96bd129152e

RESEARCH PRODUCT

Inducing characters and nilpotent subgroups

Gabriel Navarro

subject

Discrete mathematicsFinite groupPure mathematicsNilpotentApplied MathematicsGeneral MathematicsMathematics

description

If H H is a subgroup of a finite group G G and γ ∈ Irr ⁡ ( H ) \gamma \in \operatorname {Irr}(H) induces irreducibly up to G G , we prove that, under certain odd hypothesis, F ( G ) F ( H ) \mathbf {F}(G) \mathbf {F}(H) is a nilpotent subgroup of G G .

http://www.scopus.com/inward/record.url?eid=2-s2.0-21444442331&partnerID=MN8TOARS