6533b82dfe1ef96bd129158d

RESEARCH PRODUCT

Experimental Evidence of Leaks in Elastic Pipes

Valeria PuleoChiara Maria FontanazzaVincenza NotaroGabriele FreniMauro De Marchis

subject

Laboratory testLeakEngineering0208 environmental biotechnologyPopulationRigidity (psychology)02 engineering and technology010501 environmental sciences01 natural sciencesHydraulic headExperimentGeotechnical engineeringeducationElastic pipe0105 earth and related environmental sciencesWater Science and TechnologyCivil and Structural Engineeringeducation.field_of_studyHydrogeologyMathematical modelbusiness.industryMechanicsWater distribution network020801 environmental engineeringExponential functionHead-leakage formulaLeakbusinessBody orifice

description

Several studies have been carried out in recent decades to establish a relationship between total head and leaks. In literature, the leakage governing equations have been analysed in light of pipe materials, water head, leak dimension or shape. Most of these contributions questioned the classical Torricelli equation, demonstrating through experimental evidence that the classical orifice law can give unsatisfactory results. Nevertheless, starting from the Torricelli equation, other exponential or linear governing equations have been proposed as mathematical models able to reproduce the leakages in water distribution systems (WDSs). To investigate the validity of the proposed governing equations, an experimental campaign was carried out by means of a water distribution network composed of approximately 500 m of polyethylene pipes. The experiments were designed to investigate the effects of leak area and pipe rigidity on discharge. Furthermore, the effect of leak size enlargement with water head was analysed. Finally, the proposed research contributes to the population of a database for estimating the coefficients of head-discharge relationships.

10.1007/s11269-016-1265-2http://hdl.handle.net/10447/355203