6533b82dfe1ef96bd1291e4d

RESEARCH PRODUCT

An Integral on a Complete Metric Measure Space

Giuseppa CorraoDonatella Bongiorno

subject

HK-integralMeasure (physics)Space (mathematics)26A39Settore MAT/05 - Analisi MatematicaMetric (mathematics)CalculusGeometry and Topology28A12HK-integral ACG4 function critical variationAnalysis\(ACG^\bigtriangleup\) functionMathematicscritical variation

description

We study a Henstock-Kurzweil type integral defined on a complete metric measure space \(X\) endowed with a Radon measure \(\mu\) and with a family of “cells” \(\mathcal{F}\) that satisfies the Vitali covering theorem with respect to \(\mu\). This integral encloses, in particular, the classical Henstock-Kurzweil integral on the real line, the dyadic Henstock-Kurzweil integral, the Mawhin’s integral [19], and the \(s\)-HK integral [4]. The main result of this paper is the extension of the usual descriptive characterizations of the Henstock-Kurzweil integral on the real line, in terms of \(ACG^*\) functions (Main Theorem 1) and in terms of variational measures (Main Theorem 2).

http://projecteuclid.org/euclid.rae/1435759201