6533b82dfe1ef96bd1291f4e

RESEARCH PRODUCT

On a time-depending Monge-Ampère type equation

B. Brandolini

subject

Pure mathematicsDerivation formulaPlane (geometry)Applied MathematicsOperator (physics)Mathematical analysisComparison resultsSymmetrizationMonge-Ampère equationType equationSettore MAT/05 - Analisi MatematicaAmpereAnalysisMathematics

description

Abstract In this paper, we prove a comparison result between a solution u ( x , t ) , x ∈ Ω ⊂ R 2 , t ∈ ( 0 , T ) , of a time depending equation involving the Monge–Ampere operator in the plane and the solution of a conveniently symmetrized parabolic equation. To this aim, we prove a derivation formula for the integral of a smooth function g ( x , t ) over sublevel sets of u , { x ∈ Ω : u ( x , t ) ϑ } , ϑ ∈ R , having the same perimeter in R 2 .

10.1016/j.na.2012.02.016http://hdl.handle.net/10447/494044