6533b82dfe1ef96bd1291feb
RESEARCH PRODUCT
General Relativistic Simulations of Binary Neutron Star Mergers
Bruno GiacomazzoLuciano RezzollaLuca BaiottiDavid LinkJosé A. FontJ. E. MceneryJ. L. RacusinN. Gehrelssubject
PhysicsGravitational-wave observatoryGravitational waveAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsMass ratioBinary pulsarLIGONeutron starmagnetohydrodynamics binary neutron stars gravitational wavesGamma-ray burstAstrophysics::Galaxy Astrophysicsdescription
Binary neutron star mergers are one of the possible candidates for the central engine of short gamma‐ray bursts (GRBs) and they are also powerful sources of gravitational waves. We have used our fully general relativistic hydrodynamical code Whisky to investigate the merger of binary neutron star systems and we have in particular studied the properties of the tori that can be formed by these systems, their possible connection with the engine of short GRBs and the gravitational wave signals that detectors such as advanced LIGO will be able to detect. We have also shown how the mass of the torus varies as a function of the total mass of the neutron stars composing the binary and of their mass ratio and we have found that tori sufficiently massive to power short GRBs can indeed be formed.
year | journal | country | edition | language |
---|---|---|---|---|
2011-01-01 |