0000000000041535

AUTHOR

Luca Baiotti

Towards modelling the central engine of short GRBs

Numerical relativity simulations of non-vacuum spacetimes have reached a status where a complete description of the inspiral, merger and post-merger stages of the late evolution of close binary neutron systems is possible. Determining the properties of the black-hole-torus system produced in such an event is a key aspect to understand the central engine of short-hard gamma-ray bursts (sGRBs). Of the many properties characterizing the torus, the total rest-mass is the most important one, since it is the torus' binding energy which can be tapped to extract the large amount of energy necessary to power the sGRB emission. In addition, the rest-mass density and angular momentum distribution in t…

research product

3-D collapse of rotating stars to Kerr black holes

We study gravitational collapse of uniformly rotating neutron stars to Kerr black holes, using a new three-dimensional, fully general relativistic hydrodynamics code, which uses high-resolution shock-capturing techniques and a conformal traceless formulation of the Einstein equations. We investigate the gravitational collapse by carefully studying not only the dynamics of the matter, but also that of the trapped surfaces, i.e. of both the apparent and event horizons formed during the collapse. The use of these surfaces, together with the dynamical horizon framework, allows for a precise measurement of the black-hole mass and spin. The ability to successfully perform these simulations for su…

research product

Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs

We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found eviden…

research product

Accurate evolutions of unequal-mass neutron-star binaries: properties of the torus and short GRB engines

We present new results from accurate and fully general-relativistic simulations of the coalescence of unmagnetized binary neutron stars with various mass ratios. The evolution of the stars is followed through the inspiral phase, the merger and prompt collapse to a black hole, up until the appearance of a thick accretion disk, which is studied as it enters and remains in a regime of quasi-steady accretion. Although a simple ideal-fluid equation of state with \Gamma=2 is used, this work presents a systematic study within a fully general relativistic framework of the properties of the resulting black-hole--torus system produced by the merger of unequal-mass binaries. More specifically, we show…

research product

Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole

We present a new three-dimensional fully general-relativistic hydrodynamics code using high-resolution shock-capturing techniques and a conformal traceless formulation of the Einstein equations. Besides presenting a thorough set of tests which the code passes with very high accuracy, we discuss its application to the study of the gravitational collapse of uniformly rotating neutron stars to Kerr black holes. The initial stellar models are modelled as relativistic polytropes which are either secularly or dynamically unstable and with angular velocities which range from slow rotation to the mass-shedding limit. We investigate the gravitational collapse by carefully studying not only the dynam…

research product

General Relativistic Simulations of Binary Neutron Star Mergers

Binary neutron star mergers are one of the possible candidates for the central engine of short gamma‐ray bursts (GRBs) and they are also powerful sources of gravitational waves. We have used our fully general relativistic hydrodynamical code Whisky to investigate the merger of binary neutron star systems and we have in particular studied the properties of the tori that can be formed by these systems, their possible connection with the engine of short GRBs and the gravitational wave signals that detectors such as advanced LIGO will be able to detect. We have also shown how the mass of the torus varies as a function of the total mass of the neutron stars composing the binary and of their mass…

research product

THE MISSING LINK: MERGING NEUTRON STARS NATURALLY PRODUCE JET-LIKE STRUCTURES AND CAN POWER SHORT GAMMA-RAY BURSTS

Short Gamma-Ray Bursts (SGRBs) are among the most luminous explosions in the universe, releasing in less than one second the energy emitted by our Galaxy over one year. Despite decades of observations, the nature of their "central-engine" remains unknown. Considering a binary of magnetized neutron stars and solving Einstein equations, we show that their merger results in a rapidly spinning black hole surrounded by a hot and highly magnetized torus. Lasting over 35 ms and much longer than previous simulations, our study reveals that magnetohydrodynamical instabilities amplify an initially turbulent magnetic field of ~ 10^{12} G to produce an ordered poloidal field of ~ 10^{15} G along the bl…

research product

THREE-DIMENSIONAL RELATIVISTIC SIMULATIONS OF ROTATING NEUTRON-STAR COLLAPSE TO A KERR BLACK HOLE

We present a new three-dimensional fully general-relativistic hydrodynamics code using high-resolution shock-capturing techniques and a conformal traceless formulation of the Einstein equations. Besides presenting a thorough set of tests which the code passes with very high accuracy, we discuss its application to the study of the gravitational collapse of uniformly rotating neutron stars to Kerr black holes. The initial stellar models are modeled as relativistic polytropes which are either secularly or dynamically unstable and with angular velocities which range from slow rotation to the mass-shedding limit. We investigate the gravitational collapse by carefully studying not only the dynami…

research product

Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity

Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogues in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth …

research product