6533b82dfe1ef96bd1291ff6

RESEARCH PRODUCT

Physico-chemical state influences in vitro release profile of curcumin from pectin beads

Pascale WincklerPauline LoisonAn Thi-binh NguyenOdile ChambinYves Waché

subject

Ionotropic gelation methodfood.ingredientCurcuminPectinChemical PhenomenaChemistry Pharmaceutical02 engineering and technologyMicelleFLIM studiesMatrix (chemical analysis)03 medical and health scienceschemistry.chemical_compoundColloid and Surface ChemistryfoodAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyPhysical and Theoretical ChemistrySolubility030304 developmental biology0303 health sciencesAqueous solutionChromatographyCalorimetry Differential ScanningChemistryStereoisomerismSurfaces and InterfacesGeneral MedicineIn vitro release021001 nanoscience & nanotechnologyMicrospheresBody FluidsRatsSolventKineticsMicroscopy FluorescenceSolubilityPolyphenolCurcuminPectinsEncapsulation0210 nano-technologyPhysico-chemical stateBiotechnology

description

International audience; Curcumin is a polyphenolic compound with diverse effects interesting to develop health benefit products but its formulation in functional foods or in food supplement is hampered by its poor water solubility and susceptibility to alkaline conditions, light, oxidation and heat. Encapsulation of curcumin could be a mean to overcome these difficulties. In this paper, curcumin was encapsulated by ionotropic gelation method in low methoxyl pectin beads associated with different surfactants: Solutol®, Transcutol® and sodium caseinate. After encapsulation, physico-chemical properties of encapsulated curcumin such as its solubility, physical state, tautomeric forms and encapsulation efficiency as well as encapsulation yield were characterized. In vitro dissolution of curcumin from beads displayed different kinetic profiles according to bead composition due to different matrix network. As Solutol® was a good solvent for curcumin, the drug was present into amorphous form in these beads inducing a rapid release of curcumin in the simulated digestive fluids. In contrast, drug release was slower from sodium caseinate beads since curcumin was not totally dissolved during the manufacturing process. Moreover, the FLIM studies showed that a part of curcumin was encapsulated in caseinate micelles and that 34% of this drug was in keto form which may delay the curcumin release. The Transcutol beads showed also a slow drug release because of the low curcumin solubility and the high density of the matrix.

10.1016/j.colsurfb.2014.05.023https://hal-agrosup-dijon.archives-ouvertes.fr/hal-02877714