6533b82efe1ef96bd12925e4

RESEARCH PRODUCT

Space of signatures as inverse limits of Carnot groups

Roger ZüstEnrico Le DonneEnrico Le Donne

subject

SequencePure mathematicsControl and OptimizationRank (linear algebra)Geodesic010102 general mathematicsCarnot groupSpace (mathematics)01 natural sciencesComputational Mathematicssymbols.namesakeMetric spaceControl and Systems Engineering0103 physical sciencessymbolsMetric tree010307 mathematical physics0101 mathematicsCarnot cycleMathematics

description

We formalize the notion of limit of an inverse system of metric spaces with 1-Lipschitz projections having unbounded fibers. The construction is applied to the sequence of free Carnot groups of fixed rank n and increasing step. In this case, the limit space is in correspondence with the space of signatures of rectifiable paths in ℝn, as introduced by Chen. Hambly-Lyons’s result on the uniqueness of signature implies that this space is a geodesic metric tree. As a particular consequence we deduce that every path in ℝn can be approximated by projections of some geodesics in some Carnot group of rank n, giving an evidence that the complexity of sub-Riemannian geodesics increases with the step.

https://doi.org/10.1051/cocv/2021040