6533b82efe1ef96bd1292772

RESEARCH PRODUCT

Chaos in two-dimensional Kepler problem with spin-orbit coupling

V. A. StephanovichE. Ya. Sherman

subject

Condensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciencesChaotic Dynamics (nlin.CD)Nonlinear Sciences - Chaotic Dynamics

description

We consider classical two-dimensional Kepler system with spin-orbit coupling and show that at a sufficiently strong coupling it demonstrates a chaotic behavior. The chaos emerges since the spin-orbit coupling reduces the number of the integrals of motion as compared to the number of the degrees of freedom. This reduction is manifested in the equations of motion as the emergence of the anomalous velocity determined by the spin orientation. By using analytical and numerical arguments, we demonstrate that the chaotic behavior, being driven by this anomalous term, is related to the system energy dependence on the initial spin orientation. We observe the critical dependence of the dynamics on the initial conditions, where system can enter and exit a stability domain by very small changes in the initial spin orientation. Thus, this system can demonstrate a reentrant order-from-disorder transition driven by very small variations in the initial conditions.

10.1039/c7cp07949dhttp://arxiv.org/abs/1711.08773