6533b82efe1ef96bd129289c

RESEARCH PRODUCT

Regulated Proteolysis of RAGE and AβPP as Possible Link Between Type 2 Diabetes Mellitus and Alzheimer's Disease

Elzbieta KojroRolf Postina

subject

medicine.medical_specialtyendocrine system diseasesProteolysisReceptor for Advanced Glycation End ProductsAmyloid beta-Protein PrecursorAlzheimer DiseaseGlycationInternal medicinemental disordersmedicineAnimalsHumansReceptors ImmunologicProtein precursorProtein kinase AReceptorAmyloid beta-Peptidesmedicine.diagnostic_testChemistryGeneral Neurosciencenutritional and metabolic diseasesGeneral MedicinePsychiatry and Mental healthClinical PsychologyCholesterolEndocrinologyDiabetes Mellitus Type 2EctodomainPeptide transportAmyloid Precursor Protein SecretasesGeriatrics and GerontologySignal transduction

description

Epidemiological studies have linked type 2 diabetes mellitus (T2DM) with an increased risk of developing Alzheimer's disease (AD). In T2DM, the elevated blood glucose level promotes formation of advanced glycation end products (AGEs). The receptor for AGEs (RAGE) is a type I membrane-protein and is also able to import amyloid-beta (Abeta) from the blood across the blood-brain-barrier into the brain. Oligomeric Abeta peptides disturb synaptic function in the brain and are believed to contribute to the development of AD. Abeta peptides are released from the amyloid-beta protein precursor (AbetaPP) after sequential proteolysis by beta- and gamma-secretases but alpha-secretase-mediated cleavage of AbetaPP prevents Abeta generation. Insulin influences Abeta production by modulating alpha-secretase activity and Abeta degradation. Recent publications demonstrate that RAGE is subjected to protein ectodomain shedding. Proteolysis of RAGE occurs constitutively and is inducible by activation of protein kinase C. Alpha-secretase-like enzymes release the ligand binding domain of RAGE from the cell surface and after that gamma-secretase processes the membrane-remaining part of RAGE. Proteolysis of RAGE may represent a regulatory mechanism in RAGE signal transduction and in addition may prevent Abeta peptide transport across the blood-brain-barrier. Current data suggest that the sequential proteolysis of RAGE is homologous to AbetaPP processing.

https://doi.org/10.3233/jad-2009-0998