6533b82efe1ef96bd129292f
RESEARCH PRODUCT
Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications
Zhijie WangDawei CaoJure DemsarJure DemsarZhibing ZhanManuel ObergfellYong LeiLiaoyong WenNasori NasoriRui XuYan Misubject
Materials scienceSciencePhotoelectrochemistryGeneral Physics and AstronomyNanotechnology02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyGeneral Biochemistry Genetics and Molecular BiologyArticlePhotovoltaicsddc:530Polarization (electrochemistry)PhotocurrentMultidisciplinarybusiness.industryQGeneral ChemistryPhotoelectrochemical cell021001 nanoscience & nanotechnologyFerroelectricity0104 chemical sciencesBand bendingSemiconductor0210 nano-technologybusinessdescription
Utilizing plasmonic nanostructures for efficient and flexible conversion of solar energy into electricity or fuel presents a new paradigm in photovoltaics and photoelectrochemistry research. In a conventional photoelectrochemical cell, consisting of a plasmonic structure in contact with a semiconductor, the type of photoelectrochemical reaction is determined by the band bending at the semiconductor/electrolyte interface. The nature of the reaction is thus hard to tune. Here instead of using a semiconductor, we employed a ferroelectric material, Pb(Zr,Ti)O3 (PZT). By depositing gold nanoparticle arrays and PZT films on ITO substrates, and studying the photocurrent as well as the femtosecond transient absorbance in different configurations, we demonstrate an effective charge transfer between the nanoparticle array and PZT. Most importantly, we show that the photocurrent can be tuned by nearly an order of magnitude when changing the ferroelectric polarization in PZT, demonstrating a versatile and tunable system for energy harvesting.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-12 | Nature Communications |