0000000000231049
AUTHOR
Manuel Obergfell
Energy dependence of the electron-boson coupling strength in the electron-doped cuprate superconductor Pr1.85Ce0.15CuO4−δ
In the conventional theory of superconductivity the critical temperature Tc is determined by the electron-phonon coupling constant and the phonon cut-off frequency. The hallmark experiments of McMillan and Rowell demonstrated that bosons (phonons) responsible for pairing can be observed through the frequency dependence of the gap parameter. Determination of the electron-boson coupling strength in high-${T}_{c}$ cuprates is, however, not an easy task. One of the promising ways is to measure the energy relaxation rate of photoexcited carriers by using femtosecond real-time techniques. Here, considering the electron relaxation process within the conduction band, it is commonly assumed that the…
Tracking the time-evolution of the electron distribution function in Copper by femtosecond broadband optical spectroscopy
Multitemperature models are nowadays often used to quantify the ultrafast electron-phonon (boson) relaxations and coupling strengths in advanced quantum solids. To test their applicability and limitations, we perform systematic studies of carrier relaxation dynamics in copper, a prototype system for which the two-temperature model (TTM) was initially considered. Using broadband time-resolved optical spectroscopy, we study the time evolution of the electron distribution function, $f(E)$, over a large range of excitation densities. Following intraband optical excitation, $f(E)$ is found to be athermal over several 100 fs, with a substantial part of the absorbed energy already being transferre…
Cooperative atomic motion probed by ultrafast transmission electron diffraction
In numerous solids exhibiting broken symmetry ground states, changes in electronic (spin) structure are accompanied by structural changes. Femtosecond time-resolved techniques recently contributed many important insights into the origin of their ground states by tracking dynamics of the electronic subsystem with femtosecond light pulses. Moreover, several studies of structural dynamics in systems with periodic lattice modulation (PLD) were performed. Since intensities of the super-lattice diffraction peaks are in the first approximation proportional to the square of the PLD amplitude, their temporal dynamics provides access to cooperative atomic motion. This process takes place on a fractio…
Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications
Utilizing plasmonic nanostructures for efficient and flexible conversion of solar energy into electricity or fuel presents a new paradigm in photovoltaics and photoelectrochemistry research. In a conventional photoelectrochemical cell, consisting of a plasmonic structure in contact with a semiconductor, the type of photoelectrochemical reaction is determined by the band bending at the semiconductor/electrolyte interface. The nature of the reaction is thus hard to tune. Here instead of using a semiconductor, we employed a ferroelectric material, Pb(Zr,Ti)O3 (PZT). By depositing gold nanoparticle arrays and PZT films on ITO substrates, and studying the photocurrent as well as the femtosecond …
Néel Spin-Orbit Torque Driven Antiferromagnetic Resonance in Mn2Au Probed by Time-Domain THz Spectroscopy
We observe the excitation of collective modes in the terahertz (THz) range driven by the recently discovered Neel spin-orbit torques (NSOTs) in the metallic antiferromagnet Mn_{2}Au. Temperature-dependent THz spectroscopy reveals a strong absorption mode centered near 1 THz, which upon heating from 4 to 450 K softens and loses intensity. A comparison with the estimated eigenmode frequencies implies that the observed mode is an in-plane antiferromagnetic resonance (AFMR). The AFMR absorption strength exceeds those found in antiferromagnetic insulators, driven by the magnetic field of the THz radiation, by 3 orders of magnitude. Based on this and the agreement with our theory modeling, we inf…
Energy scales and dynamics of electronic excitations in functionalized gold nanoparticles measured at the single particle level.
The knowledge of the electronic structure and dynamics of nanoparticles is a prerequisite to develop miniaturized single-electron devices based on nanoparticles. Low-temperature transport measurements of individual stable metallic nanoparticles enable unravelling the system specific electronic structure while ultrafast optical spectroscopy gives access to the electron dynamics. In this work, we investigate bare and thiol-functionalized gold nanoparticles. For the latter, we employ a fast and low-cost fabrication technique which yields nanoparticles with narrow size distribution. Using relatively long thiol-ended alkane chains for the functionalization modifies the electronic density of stat…