6533b82efe1ef96bd129297a

RESEARCH PRODUCT

On color image quality assessment using natural image statistics

Mohammed El HassouniHocine CherifiAbdelkaher Ait AbdelouahadMounir Omari

subject

FOS: Computer and information sciencesColor histogrambusiness.industryColor imageComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONColor balanceFalse colorColor spaceICC profileColor depthRGB color modelComputer visionArtificial intelligencebusinessMathematics

description

Color distortion can introduce a significant damage in visual quality perception, however, most of existing reduced-reference quality measures are designed for gray scale images. In this paper, we consider a basic extension of well-known image-statistics based quality assessment measures to color images. In order to evaluate the impact of color information on the measures efficiency, two color spaces are investigated: RGB and CIELAB. Results of an extensive evaluation using TID 2013 benchmark demonstrates that significant improvement can be achieved for a great number of distortion type when the CIELAB color representation is used.

https://dx.doi.org/10.48550/arxiv.1411.7682