0000000000122183

AUTHOR

Abdelkaher Ait Abdelouahad

showing 6 related works from this author

A New Image Distortion Measure Based on Natural Scene Statistics Modeling

2012

In the field of Image Quality Assessment (IQA), this paper examines a Reduced Reference (RRIQA) measure based on the bi-dimensional empirical mode decomposition. The proposed measure belongs to Natural Scene Statistics (NSS) modeling approaches. First, the reference image is decomposed into Intrinsic Mode Functions (IMF); the authors then use the Generalized Gaussian Density (GGD) to model IMF coefficients distribution. At the receiver side, the same number of IMF is computed on the distorted image, and then the quality assessment is done by fitting error between the IMF coefficients histogram of the distorted image and the GGD estimate of IMF coefficients of the reference image, using the …

Kullback–Leibler divergencebusiness.industryImage qualityScene statisticsPattern recognition02 engineering and technology01 natural sciencesMeasure (mathematics)Hilbert–Huang transform010309 opticsSupport vector machineHistogramDistortion0103 physical sciences0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessMathematicsInternational Journal of Computer Vision and Image Processing
researchProduct

Image Quality Assessment Based on Intrinsic Mode Function Coefficients Modeling

2011

Reduced reference image quality assessment (RRIQA) methods aim to assess the quality of a perceived image with only a reduced cue from its original version, called ”reference image”. The powerful advantage of RR methods is their ”General-purpose”. However, most introduced RR methods are built upon a non-adaptive transform models. This can limit the scope of RR methods to a small number of distortion types. In this work, we propose a bi-dimensional empirical mode decomposition-based RRIQA method. First, we decompose both, reference and distorted images, into Intrinsic Mode Functions (IMF), then we use the Generalized Gaussian Density (GGD) to model IMF coefficients. Finally, the distortion m…

Kullback–Leibler divergenceImage qualityComputer sciencebusiness.industryPattern recognitionFunction (mathematics)Hilbert–Huang transformSupport vector machineDistortionHistogramStatisticsLimit (mathematics)Artificial intelligencebusiness
researchProduct

On color image quality assessment using natural image statistics

2014

Color distortion can introduce a significant damage in visual quality perception, however, most of existing reduced-reference quality measures are designed for gray scale images. In this paper, we consider a basic extension of well-known image-statistics based quality assessment measures to color images. In order to evaluate the impact of color information on the measures efficiency, two color spaces are investigated: RGB and CIELAB. Results of an extensive evaluation using TID 2013 benchmark demonstrates that significant improvement can be achieved for a great number of distortion type when the CIELAB color representation is used.

FOS: Computer and information sciencesColor histogrambusiness.industryColor imageComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONColor balanceFalse colorColor spaceICC profileColor depthRGB color modelComputer visionArtificial intelligencebusinessMathematics
researchProduct

Tetrolet-based reduced reference image quality assessment approach

2014

In this paper, we propose a new reduced reference image quality assessment (RRIQA) scheme. For this purpose, we use a statistical-based method in a new adaptive Haar wavelet transform domain, called Tetrolet. Firstly, we decompose the reference and distorted images and we obtain the Tetrolet coefficients for each image. Secondly, we use a marginal Generalized Gaussian Density (GGD) to model each subband coefficients. Finally, the distortion measure is computed using the Kullback Leibler Divergence (KLD) between GGD Probability density function (PDFs). Experimental results show the efficiency of the proposed method when comparing to those reported in the literature.

Reference imageKullback–Leibler divergencebusiness.industryComputer scienceDistortionPattern recognitionProbability density functionArtificial intelligencebusinessMeasure (mathematics)Domain (mathematical analysis)Haar waveletImage (mathematics)2014 International Conference on Multimedia Computing and Systems (ICMCS)
researchProduct

Image Quality Assessment Measure Based on Natural Image Statistics in the Tetrolet Domain

2012

This paper deals with a reduced reference (RR) image quality measure based on natural image statistics modeling. For this purpose, Tetrolet transform is used since it provides a convenient way to capture local geometric structures. This transform is applied to both reference and distorted images. Then, Gaussian Scale Mixture (GSM) is proposed to model subbands in order to take account statistical dependencies between tetrolet coefficients. In order to quantify the visual degradation, a measure based on Kullback Leibler Divergence (KLD) is provided. The proposed measure was tested on the Cornell VCL A-57 dataset and compared with other measures according to FR-TV1 VQEG framework.

Kullback–Leibler divergenceImage qualitybusiness.industryTetrolet transformPattern recognitionMeasure (mathematics)Domain (software engineering)Image (mathematics)GSMGaussian scale mixturesStatisticsArtificial intelligencebusinessMathematics
researchProduct

Color image quality assessment measure using multivariate generalized Gaussian distribution

2014

This paper deals with color image quality assessment in the reduced-reference framework based on natural scenes statistics. In this context, we propose to model the statistics of the steer able pyramid coefficients by a Multivariate Generalized Gaussian distribution (MGGD). This model allows taking into account the high correlation between the components of the RGB color space. For each selected scale and orientation, we extract a parameter matrix from the three color components sub bands. In order to quantify the visual degradation, we use a closed-form of Kullback-Leibler Divergence (KLD) between two MGGDs. Using "TID 2008" benchmark, the proposed measure has been compared with the most i…

FOS: Computer and information sciencesColor histogramColor imagebusiness.industryComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionPattern recognitionColor spaceRGB color spacesymbols.namesakesymbolsPyramid (image processing)Artificial intelligencebusinessDivergence (statistics)Gaussian processGeneralized normal distributionMathematics
researchProduct