6533b82efe1ef96bd12932c9

RESEARCH PRODUCT

Giant Enhancement in the Supercapacitance of NiFe–Graphene Nanocomposites Induced by a Magnetic Field

Helena Prima-garcíaSara G. MirallesGonzalo AbellánGonzalo AbellánEugenio CoronadoJorge RomeroVíctor OestreicherMaria Varela

subject

Materials scienceNanoparticle02 engineering and technology010402 general chemistry7. Clean energy01 natural sciencesCapacitanceEnergy storageMetalGeneral Materials ScienceMaterialsSupercapacitorNanocompositebusiness.industryMechanical Engineering021001 nanoscience & nanotechnology0104 chemical sciencesMagnetic fieldGraphene nanocompositesMechanics of Materialsvisual_artvisual_art.visual_art_mediumOptoelectronicsEnergia0210 nano-technologybusiness

description

The rapid rise in energy demand in the past years has prompted a search for low-cost alternatives for energy storage, supercapacitors being one of the most important devices. It is shown that a dramatic enhancement (≈1100%, from 155 to 1850 F g-1 ) of the specific capacitance of a hybrid stimuli-responsive FeNi3 -graphene electrode material can be achieved when the charge/discharge cycling is performed in the presence of an applied magnetic field of 4000 G. This result is related to an unprecedented magnetic-field-induced metal segregation of the FeNi3 nanoparticles during the cycling, which results in the appearance of small Ni clusters (<5 nm) and, consequently, in an increase in pseudocapacitive sites. The results open the door to a systematic improvement of the capacitance values of hybrid supercapacitors, while moving the research in this area towards the development of magnetically addressable energy-storage devices.

https://doi.org/10.1002/adma.201900189