6533b82efe1ef96bd129335e

RESEARCH PRODUCT

Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples

Faisal KhanMichael KerstenFrieder Enzmann

subject

010504 meteorology & atmospheric sciencesComputer scienceStratigraphySoil ScienceImage processing010502 geochemistry & geophysicsResidual01 natural sciences550 Earth scienceslcsh:StratigraphyGeochemistry and PetrologyLeast squares support vector machineSegmentationlcsh:QE640-6990105 earth and related environmental sciencesEarth-Surface ProcessesPixelbusiness.industrylcsh:QE1-996.5PaleontologyGeologyPattern recognition550 Geowissenschaftenlcsh:GeologyData setSupport vector machineGeophysicsData pointArtificial intelligencebusiness

description

Abstract. Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squares support vector machine (LS-SVM, an algorithm for pixel-based multi-phase classification) approach. A receiver operating characteristic (ROC) analysis was performed on BH-corrected and uncorrected samples to show that BH correction is in fact an important prerequisite for accurate multi-phase classification. The combination of the two approaches was thus used to classify successfully three different more or less complex multi-phase rock core samples.

https://doi.org/10.5194/se-7-481-2016