6533b82efe1ef96bd12933d6

RESEARCH PRODUCT

The Dispirited Case of Gauged $U(1)_{B-L}$ Dark Matter

Samuel J. WitteNuria RiusMiguel Escudero

subject

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics beyond the Standard ModelHadronDark matterFOS: Physical sciencesParameter space01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesLandau polelcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyBeyond Standard Modellcsh:QC770-798High Energy Physics::ExperimentNeutrinoPhenomenology (particle physics)LeptonAstrophysics - Cosmology and Nongalactic Astrophysics

description

We explore the constraints and phenomenology of possibly the simplest scenario that could account at the same time for the active neutrino masses and the dark matter in the Universe within a gauged $U(1)_{B-L}$ symmetry, namely right-handed neutrino dark matter. We find that null searches from lepton and hadron colliders require dark matter with a mass below 900 GeV to annihilate through a resonance. Additionally, the very strong constraints from high-energy dilepton searches fully exclude the model for $ 150 \, \text{GeV} < m_{Z'} < 3 \, \text{TeV}$. We further explore the phenomenology in the high mass region (i.e. masses $\gtrsim \mathcal{O}(1) \, \text{TeV}$) and highlight theoretical arguments, related to the appearance of a Landau pole or an instability of the scalar potential, disfavoring large portions of this parameter space. Collectively, these considerations illustrate that a minimal extension of the Standard Model via a local $U(1)_{B-L}$ symmetry with a viable thermal dark matter candidate is difficult to achieve without fine-tuning. We conclude by discussing possible extensions of the model that relieve tension with collider constraints by reducing the gauge coupling required to produce the correct relic abundance.

10.1007/jhep08(2018)190http://arxiv.org/abs/1806.02823