6533b82efe1ef96bd12933e1

RESEARCH PRODUCT

Fractional characteristic times and dissipated energy in fractional linear viscoelasticity

Natalia Colinas-armijoFrancesco Paolo PinnolaMario Di Paola

subject

Numerical AnalysisDifferential equationApplied MathematicsMathematical analysisConstitutive equationLoss and storage modulusStiffnessDissipated energy Fractional calculus in linear viscoelasticity Fractional creep and relaxation times Loss and storage modulusHarmonic (mathematics)02 engineering and technologyDissipationDissipated energy021001 nanoscience & nanotechnologyViscoelasticityViscosity020303 mechanical engineering & transports0203 mechanical engineeringModeling and SimulationmedicineRelaxation (physics)Fractional creep and relaxation timemedicine.symptom0210 nano-technologyFractional calculus in linear viscoelasticityMathematics

description

Abstract In fractional viscoelasticity the stress–strain relation is a differential equation with non-integer operators (derivative or integral). Such constitutive law is able to describe the mechanical behavior of several materials, but when fractional operators appear, the elastic and the viscous contribution are inseparable and the characteristic times (relaxation and retardation time) cannot be defined. This paper aims to provide an approach to separate the elastic and the viscous phase in the fractional stress–strain relation with the aid of an equivalent classical model (Kelvin–Voigt or Maxwell). For such equivalent model the parameters are selected by an optimization procedure. Once the parameters of the equivalent model are defined, characteristic times of fractional viscoelasticity are readily defined as ratio between viscosity and stiffness. In the numerical applications, three kinds of different excitations are considered, that is, harmonic, periodic, and pseudo-stochastic. It is shown that, for any periodic excitation, the equivalent models have some important features: (i) the dissipated energy per cycle at steady-state coincides with the Staverman–Schwarzl formulation of the fractional model, (ii) the elastic and the viscous coefficients of the equivalent model are strictly related to the storage and the loss modulus, respectively.

10.1016/j.cnsns.2016.01.003http://hdl.handle.net/11588/733278