6533b82efe1ef96bd1293408

RESEARCH PRODUCT

Time-dependent weak rate of convergence for functions of generalized bounded variation

Antti Luoto

subject

Statistics and ProbabilityApproximation using simple random walkweak rate of convergence01 natural sciencesStochastic solution41A25 65M15 (Primary) 35K05 60G50 (Secondary)010104 statistics & probabilityExponential growthFOS: Mathematics0101 mathematicsBrownian motionstokastiset prosessitMathematicsosittaisdifferentiaaliyhtälötApplied MathematicsProbability (math.PR)010102 general mathematicsMathematical analysisfinite difference approximation of the heat equationFunction (mathematics)Rate of convergenceBounded functionBounded variationnumeerinen analyysiapproksimointiStatistics Probability and UncertaintyMathematics - Probability

description

Let $W$ denote the Brownian motion. For any exponentially bounded Borel function $g$ the function $u$ defined by $u(t,x)= \mathbb{E}[g(x{+}\sigma W_{T-t})]$ is the stochastic solution of the backward heat equation with terminal condition $g$. Let $u^n(t,x)$ denote the corresponding approximation generated by a simple symmetric random walk with time steps $2T/n$ and space steps $\pm \sigma \sqrt{T/n}$ where $\sigma > 0$. For quite irregular terminal conditions $g$ (bounded variation on compact intervals, locally H\"older continuous) the rate of convergence of $u^n(t,x)$ to $u(t,x)$ is considered, and also the behavior of the error $u^n(t,x)-u(t,x)$ as $t$ tends to $T$

https://doi.org/10.1080/07362994.2020.1809458