6533b82efe1ef96bd12934ba
RESEARCH PRODUCT
Lagrangian dynamics and possible isochronous behavior in several classes of non-linear second order oscillators via the use of Jacobi last multiplier
U. TanriverGaetana GambinoS. Roy Choudhurysubject
Isochronous dynamicConservation lawApplied MathematicsMechanical EngineeringMathematical analysisAnharmonicityIsotonic potentialJacobi Last Multiplier (JLM)Simple harmonic motionInverse problemMultiplier (Fourier analysis)Nonlinear systemsymbols.namesakeSimple harmonic oscillatorMechanics of MaterialssymbolsNoether's theoremSettore MAT/07 - Fisica MatematicaLagrangianConservation lawsVariable (mathematics)Mathematicsdescription
Abstract In this paper, we employ the technique of Jacobi Last Multiplier (JLM) to derive Lagrangians for several important and topical classes of non-linear second-order oscillators, including systems with variable and parametric dissipation, a generalized anharmonic oscillator, and a generalized Lane–Emden equation. For several of these systems, it is very difficult to obtain the Lagrangians directly, i.e., by solving the inverse problem of matching the Euler–Lagrange equations to the actual oscillator equation. In order to facilitate the derivation of exact solutions, and also investigate possible isochronous behavior in the analyzed systems, we next invoke some recent theoretical results and attempt to map the potential term to either the simple harmonic oscillator or the isotonic potential for specific values of the coefficient parameters of each non-linear oscillator. We find non-trivial parameter sets corresponding to isochronous dynamics in some of the considered systems, but none in others. Finally, the Lagrangians obtained here are coupled to Noether׳s theorem, leading to non-trivial conservation laws for several of the oscillators.
year | journal | country | edition | language |
---|---|---|---|---|
2015-09-01 | International Journal of Non-Linear Mechanics |