6533b82efe1ef96bd1293969

RESEARCH PRODUCT

Analysis of the apparent nuclear modification in peripheral Pb–Pb collisions at 5.02 TeV

Alice Collaboration

subject

nuclear modificationNuclear and High Energy PhysicsPb–Pb collisionsNuclear TheoryhiukkasfysiikkaNuclear Experimentydinfysiikka

description

Charged-particle spectra at midrapidity are measured in Pb–Pb collisions at the centre-of-mass energy per nucleon–nucleon pair √sNN = 5.02 TeV and presented in centrality classes ranging from most central (0–5%) to most peripheral (95–100%) collisions. Possible medium effects are quantified using the nuclear modification factor (RAA) by comparing the measured spectra with those from proton–proton collisions, scaled by the number of independent nucleon–nucleon collisions obtained from a Glauber model. At large transverse momenta (8<pT <20GeV/c), the average RAA is found to increase from about 0.15 in 0–5% central to a maximum value of about 0.8 in 75–85% peripheral collisions, beyond which it falls off strongly to below 0.2 for the most peripheral collisions. Furthermore, RAA initially exhibits a positive slope as a function of pT in the 8–20 GeV/c interval, while for collisions beyond the 80% class the slope is negative. To reduce uncertainties related to event selection and normalization, we also provide the ratio of R AA in adjacent centrality intervals. Our results in peripheral collisions are consistent with a PYTHIA-based model without nuclear modification, demonstrating that biases caused by the event selection and collision geometry can lead to the apparent suppression in peripheral collisions. This explains the unintuitive observation that RAA is below unity in peripheral Pb–Pb, but equal to unity in minimum-bias p–Pb collisions despite similar charged-particle multiplicities.

https://dspace.library.uu.nl/handle/1874/382226