6533b82efe1ef96bd1293a9b
RESEARCH PRODUCT
Study of e+e−→pp¯ in the vicinity of ψ(3770)
M. AblikimM.n. AchasovX.c. AiO. AlbayrakM. AlbrechtD.j. AmbroseF.f. AnQ. AnJ.z. BaiR. Baldini FerroliY. BanJ.v. BennettM. BertaniJ.m. BianE. BogerO. BondarenkoI. BoykoS. BraunRoy A. BriereH. CaiX. CaiO. CakirA. CalcaterraG.f. CaoS.a. CetinJ.f. ChangG. ChelkovG. ChenH.s. ChenJ.c. ChenM.l. ChenS.j. ChenX. ChenX.r. ChenY.b. ChenH.p. ChengX.k. ChuY.p. ChuD. Cronin-hennessyH.l. DaiJ.p. DaiD. DedovichZ.y. DengA. DenigI. DenysenkoM. DestefanisW.m. DingY. DingC. DongJ. DongL.y. DongM.y. DongS.x. DuJ.z. FanJ. FangS.s. FangY. FangL. FavaC.q. FengC.d. FuO. FuksQ. GaoY. GaoC. GengK. GoetzenW.x. GongW. GradlM. GrecoM.h. GuY.t. GuY.h. GuanL.b. GuoT. GuoY.p. GuoY.l. HanF.a. HarrisK.l. HeM. HeZ.y. HeT. HeldY.k. HengZ.l. HouC. HuH.m. HuJ.f. HuT. HuG.m. HuangG.s. HuangH.p. HuangJ.s. HuangL. HuangX.t. HuangY. HuangT. HussainC.s. JiQ. JiQ.p. JiX.b. JiX.l. JiL.l. JiangL.w. JiangX.s. JiangJ.b. JiaoZ. JiaoD.p. JinS. JinT. JohanssonN. Kalantar-nayestanakiX.l. KangX.s. KangM. KavatsyukB. KlossB. KopfM. KornicerW. KühnA. KupscW. LaiJ.s. LangeM. LaraP. LarinM. LeyheC.h. LiCheng LiCui LiD. LiD.m. LiF. LiG. LiH.b. LiJ.c. LiK. LiK. LiLei LiP.r. LiQ.j. LiT. LiW.d. LiW.g. LiX.l. LiX.n. LiX.q. LiZ.b. LiH. LiangY.f. LiangY.t. LiangD.x. LinB.j. LiuC.l. LiuC.x. LiuF.h. LiuFang LiuFeng LiuH.b. LiuH.h. LiuH.m. LiuJ. LiuJ.p. LiuK. LiuK.y. LiuP.l. LiuQ. LiuS.b. LiuX. LiuY.b. LiuZ.a. LiuZhiqiang LiuZhiqing LiuH. LoehnerX.c. LouG.r. LuH.j. LuH.l. LuJ.g. LuX.r. LuY. LuY.p. LuC.l. LuoM.x. LuoT. LuoX.l. LuoM. LvF.c. MaH.l. MaQ.m. MaS. MaT. MaX.y. MaF.e. MaasM. MaggioraQ.a. MalikY.j. MaoZ.p. MaoJ.g. MesschendorpJ. MinT.j. MinR.e. MitchellX.h. MoY.j. MoH. MoeiniC. Morales MoralesK. MoriyaN.yu. MuchnoiH. MuramatsuY. NefedovF. NerlingI.b. NikolaevZ. NingS. NisarX.y. NiuS.l. OlsenQ. OuyangS. PacettiM. PelizaeusH.p. PengK. PetersJ.l. PingR.g. PingR. PolingM. QiS. QianC.f. QiaoL.q. QinN. QinX.s. QinY. QinZ.h. QinJ.f. QiuK.h. RashidC.f. RedmerM. RipkaG. RongX.d. RuanA. SarantsevK. SchoenningS. SchumannW. ShanM. ShaoC.p. ShenX.y. ShenH.y. ShengM.r. ShepherdW.m. SongX.y. SongS. SpataroB. SpruckG.x. SunJ.f. SunS.s. SunY.j. SunY.z. SunZ.j. SunZ.t. SunC.j. TangX. TangI. TapanE.h. ThorndikeD. TothM. UllrichI. UmanG.s. VarnerB. WangD. WangD.y. WangK. WangL.l. WangL.s. WangM. WangP. WangP.l. WangQ.j. WangS.g. WangW. WangX.f. WangY.d. WangY.f. WangY.q. WangZ. WangZ.g. WangZ.h. WangZ.y. WangD.h. WeiJ.b. WeiP. WeidenkaffS.p. WenM. WernerU. WiednerM. WolkeL.h. WuN. WuZ. WuL.g. XiaY. XiaD. XiaoZ.j. XiaoY.g. XieQ.l. XiuG.f. XuL. XuQ.j. XuQ.n. XuX.p. XuZ. XueL. YanW.b. YanW.c. YanY.h. YanH.x. YangL. YangY. YangY.x. YangH. YeM. YeM.h. YeB.x. YuC.x. YuH.w. YuJ.s. YuS.p. YuC.z. YuanW.l. YuanY. YuanA. YuncuA.a. ZafarA. ZalloS.l. ZangY. ZengB.x. ZhangB.y. ZhangC. ZhangC.b. ZhangC.c. ZhangD.h. ZhangH.h. ZhangH.y. ZhangJ.j. ZhangJ.q. ZhangJ.w. ZhangJ.y. ZhangJ.z. ZhangS.h. ZhangX.j. ZhangX.y. ZhangY. ZhangY.h. ZhangZ.h. ZhangZ.p. ZhangZ.y. ZhangG. ZhaoJ.w. ZhaoLei ZhaoLing ZhaoM.g. ZhaoQ. ZhaoQ.w. ZhaoS.j. ZhaoT.c. ZhaoX.h. ZhaoY.b. ZhaoZ.g. ZhaoA. ZhemchugovB. ZhengJ.p. ZhengY.h. ZhengB. ZhongL. ZhouLi ZhouX. ZhouX.k. ZhouX.r. ZhouX.y. ZhouK. ZhuK.j. ZhuX.l. ZhuY.c. ZhuY.s. ZhuZ.a. ZhuJ. ZhuangB.s. ZouJ.h. Zousubject
PhysicsNuclear and High Energy PhysicsNuclear magnetic resonanceBranching fractionPhase angleAnalytical chemistryBar (unit)description
Using 2917 pb(-1) of data accumulated at 3.773 GeV, 44.5 pb(-1) of data accumulated at 3.65 GeV and data accumulated during a psi(3770) line-shape scan with the BESIII detector, the reaction e(+)e(-) -> p (p) over bar is studied considering a possible interference between resonant and continuum amplitudes. The cross section of e(+)e(-) -> psi(3770) -> p (p) over bar, sigma(e(+)e(-)-> psi(3770) -> p (p) over bar), is found to have two solutions, determined to be (0.059(-0.020)(+0.070) +/- 0.012) pb with the phase angle phi = (255.8(-26.6)(+39.0) +/- 4.8). ( psi(3770) -> p ) = (2.57(-0.13)(+0.12) +/- 0.12) pb with phi = (266.9(-6.3)(+6.1) +/- 0.9)degrees both of which agree with a destructive interference. Using the obtained cross section of psi(3770) -> p (p) over bar, the cross section of p (p) over bar -> psi(3770), which is useful information for the future PANDA experiment, is estimated to be either (9.8(-3.9)(+11.8)) nb (< 27.5 nb at 90% C.L.) or (425.6(-43.7)(+42.9)) nb. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
year | journal | country | edition | language |
---|---|---|---|---|
2014-07-01 | Physics Letters B |