6533b82efe1ef96bd1293b95
RESEARCH PRODUCT
<title>Electrochromism of W-oxide-based films: some theoretical and experimental results</title>
Claes-goeran GranqvistDavid Le BellacJohn M. WillsJ. GabrusenoksAnders HjelmJoanna BarczynskaE. PentjussAndris Azenssubject
symbols.namesakeMaterials scienceSputteringScanning electron microscopeElectrochromismAnalytical chemistrysymbolsSubstrate (electronics)Thin filmSputter depositionRaman spectroscopyPerovskite (structure)description
We survey some recent work related to electrochromic W-oxide-based thin films. The electronic structure of cubic (perovskite) WO3 and HWO3 was calculated from first principles. It was found, among other things, that hydroxide formation was energetically favored. Experimental studies were made on films prepared by reactive magnetron sputtering in Ar + O2 with and without CF4 addition and substrate bias. Structural studies by atomic force microscopy, x-ray diffraction, infrared reflectance spectroscopy, and Raman spectroscopy indicated that the electron bombardment associated with a positive substrate bias led to grain growth and partial crystallization while maintaining a high density of W equals O double bonds presumably on internal surfaces. Electrochemical and spectrophotometric measurements demonstrated, in particular, that tandem films -- with a thin protective layer of electron bombarded oxide covering a thicker oxyfluoride layer -- were able to combine rapid dynamics of the electrochromism with good durability. Oblique angle sputtering in Ar + O2 gave films whose microstructure comprised inclined columns, as seen from scanning electron microscopy. Pronounced angular selective transmittance was found to coexist with electrochromism.© (1995) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
year | journal | country | edition | language |
---|---|---|---|---|
1995-08-23 | SPIE Proceedings |