0000000000006814

AUTHOR

J. Gabrusenoks

A comprehensive study of structure and properties of nanocrystalline zinc peroxide

Abstract Nanocrystalline zinc peroxide (nano-ZnO2) was synthesized through a hydrothermal process and comprehensively studied using several experimental techniques. Its crystal structure was characterized by X-ray diffraction, and the average crystallite size of 22 nm was estimated by Rietveld refinement. The temperature-dependent local environment around zinc atoms was reconstructed using reverse Monte Carlo (RMC) analysis from the Zn K-edge X-ray absorption spectra. The indirect band gap of about 4.6 eV was found using optical absorption spectroscopy. Lattice dynamics of nano-ZnO2 was studied by infrared and Raman spectroscopy. In situ Raman measurements indicate the stability of nano-ZnO…

research product

Obtaining of the Modified NH4NO3 Granules with 3-D Nanoporous Structure: Impact of Humidifier Type on the Granule’s Structure

The article deals with the study of the porous ammonium nitrate granules’ (PAN) nanoporous structure of surface and surface layers. The research results, presented in the article, show that the suggested way to generate PAN allows to provide the granule porous structure without destruction of core and disposal of air from the granules. Analysis of experiments results has shown that various types of humidifiers can form various kinds of pores after drying – “mechanical” pores and “modification” pores. Various types of humidifiers have significant effect on the ratio of values of “mechanical” and “modification” pores. The obtained results allow to select the optimal humidifier composition, wh…

research product

Nanoindentation and Raman Spectroscopic Study of Graphite Irradiated with Swift238U Ions

Modifications of the structure and mechanical properties of the isotropic fine-grained graphite R6650 irradiated with 2.6 GeV 238U ions at fluences up to 1013 ions/cm2 at room temperature are studied. A strong ion-induced increase of Young's modulus and hardness is observed that points to the formation of a hard form of carbon. Raman spectra ascertain the disordering of graphite and its transformation to glassy carbon.

research product

Infrared and Raman spectroscopy of WO3 and CdWO4

Abstract Infrared reflection and Raman spectroscopy have been applied to study the vibrational modes of tungsten trioxide (WO 3 ) and cadmium tungstate (CdWO 4 ). Kramers–Kronig relations are employed to yield the refractive index as well as TO and LO functions of these materials at frequencies from 50 to 1200 cm −1 . The symmetry of the vibrations of CdWO 4 is reported.

research product

Impact of Thermal Treatment on the Surface of Na0.5Bi0.5TiO3-Based Ceramics

This research was funded by the European Regional Development Fund, grant number 1.1.1.2/VIAA/3/19/558. The Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme, grant number 739508.

research product

Preparation and photoactivity of electrophoretic TiO2coating film

TiO2 thin films have been obtained by a sol-electrophoretic deposition method on metallic Ti and Pt substrates. X-ray diffraction, Raman spectroscopy and scanning electron microscopy were used to investigate the structure and morphology of plated materials. Annealed TiO2 films mainly are formed in anatase structure with different morphology depending on substrate material. Light induced potential measurements indicate that the morphology substantially have an impact on photoactivity of TiO2 thin films.

research product

Multilayer modified NH<inf>4</inf>NO<inf>3</inf> granules with 3D nanoporous structure: Effect of the heat treatment regime on the structure of macro- and mezopores

The article is devoted to the investigation of the structure of macro- and mesopores on the surface and inside of modified NH4NO3 granules. The main quality indicators of modified NH4NO3 granules are presented and the relationship between the nanoporous structure of granules and the quality indicators is shown. Various thermodynamic conditions for obtaining a nanoporous structure of the surface and internal layers during the modification of granules are considered. The optimal regime for the uniformity of the temperature distribution in the vortex granulator is the regime of mixed motion of the drying agent. In this mode, mainly “modification” pores are formed, “mechanical” pores due to the…

research product

Amorphous p-Type Conducting Zn-x Ir Oxide (x > 0.13) Thin Films Deposited by Reactive Magnetron Cosputtering

Zinc-iridium oxide (Zn-Ir-O) thin films have been demonstrated as a p-type conducting material. However, the stability of p-type conductivity with respect to chemical composition or temperature is still unclear. In this study we discuss the local atomic structure and the electrical properties of Zn-Ir-O films in the large Ir concentration range. The films are deposited by reactive DC magnetron co-sputtering at two different substrate temperatures-without intentional heating and at 300 {\deg}C. Extended X-ray absorption fine structure (EXAFS) analysis reveals that strongly disordered ZnO4 tetrahedra are the main Zn complexes in Zn-Ir-O films with up to 67.4 at% Ir. As the Ir concentration in…

research product

Structural, electrical and optical properties of zinc‐iridium oxide thin films deposited by DC reactive magnetron sputtering

ZnO-IrO2 thin films were deposited on glass by DC reactive magnetron sputtering at room tem-perature. Structural, electrical and optical properties were investigated as a function of iridium atomic concentra-tion in the films. XRD data shows that ZnO-IrO2 thin films are X-ray amorphous and Raman spectrum resembles the spectrum of IrO2, without any distinct features of wurtzite ZnO structure. The lowest film resistivity and the highest transmittance achieved in the present study were 1.4 × 10-3 Ωcm and 33% at 550 nm, respectively. However, resistivity and transmittance are inversely related to the iridium concentration in the films.

research product

Phase Composition and Nanoporous Structure of Core and Surface in the Modified Granules of NH4NO3

The article deals with the study of phase composition and crystal nanoporous structure of core and surface layer of porous ammonium nitrate (PAN). The research results, presented in the article, show that the proposed way to generate PAN allows to provide the granule porous structure without changing of its phase composition. The crystal structure of granules after the humidification and heat treatment has some changes due to the increase of the number of pores. The change of crystal structure, in turn, allows to open access to nanopores that are located in the volume of granules. This allows to increase the holding capacity indicator of granules. An important result of conducted researches…

research product

Tribovoltaic Device Based on the W/WO3 Schottky Junction Operating through Hot Carrier Extraction

research product

<title>Vibrational spectra of tungsten oxides with different lattice topology</title>

It is determined that vibrations of linear chains -O-W-O-W- in tungsten-oxygen network are rather independent. The value of vibrational frequency is determined by asymmetry of O equals W - O bonds.© (1997) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

research product

Raman, electron microscopy and electrical transport studies of x-ray amorphous Zn-Ir-O thin films deposited by reactive DC magnetron sputtering

Zn-Ir-O thin films on glass and Ti substrates were deposited by reactive DC magnetron sputtering at room temperature. Structural and electrical properties were investigated as a function of iridium concentration in the films. Raman spectrum of Zn-Ir-O (61.5 at.% Ir) resembles the spectrum of rutile IrO2, without any distinct features of wurtzite ZnO structure. SEM images indicated that morphology of the films surface improves with the iridium content. EDX spectroscopy and cross-section SEM images revealed that the films growing process is homogeneous. Crystallites with approximately 2-5 nm size were discovered in the TEM images. Thermally activated conductivity related to the variable range…

research product

<title>Electrochromism of W-oxide-based films: some theoretical and experimental results</title>

We survey some recent work related to electrochromic W-oxide-based thin films. The electronic structure of cubic (perovskite) WO3 and HWO3 was calculated from first principles. It was found, among other things, that hydroxide formation was energetically favored. Experimental studies were made on films prepared by reactive magnetron sputtering in Ar + O2 with and without CF4 addition and substrate bias. Structural studies by atomic force microscopy, x-ray diffraction, infrared reflectance spectroscopy, and Raman spectroscopy indicated that the electron bombardment associated with a positive substrate bias led to grain growth and partial crystallization while maintaining a high density of W e…

research product

Investigation of carbonized layer on surface of NaAlSi glass fibers

There are presented and discussed experimental results about carbonate shell on the sodium rich alumosilicate (NaAlSi) glass fibers and carbonization in wet air atmosphere and water uptake kinetic of such fiber fabrics. The analyzes of water uptake kinetic by regression technique, leaching and heating of carbonized glass fabrics helped to separate stages of fast and slow processes between fiber and carbonate shell and air atmosphere. The shell contains mixture of trona and hydrated sodium carbonate. Heating converts both substances to sodium carbonate. The weight uptake after heating encounters two fast exponential processes associated with water absorption on the surface of carbonated shel…

research product

Mass recovery of carbonated fabrics of glass fibres after isothermal heating

Acknowledgement: Authors acknowledge financial support from Latvian National Program IMIS2

research product

Electrochemical impedance and moisture content of glass fabric

The glass fiber fabrics have application at the wet conditions. Impedance measurements of sodium alumosilicate glass fabric in dependence on its moisture content are presented. The impact of pores of glass fibres and fabric components to electrochemical impedance of fabric are investigated and discussed.

research product

<title>Electrochromism in oxyfluoride thin films</title>

Oxyfluoride films based on W and Ti were prepared by reactive sputtering in plasmas containing O2 + CF4. The deposition rate was large, particularly when chemical sputtering was promoted by heating the target. The films could show large charge insertion/extraction, high coloration efficiency, and good cycling durability.© (1994) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

research product

Application of micro Raman spectroscopy to industrial FC membranes

Raman spectra of as-received and protonated membranes (Nafion® NRE-212, Fumapem® F-14100 and Fumasep® FAA) were measured with He-Cd and Ar laser. For the first time the Raman and IR spectra are reported of Fumasep membranes. Most of peaks in vibration spectra active in Raman and IR of membranes are interpreted with C-F, C-S, C-O-C, SO3, C-C bonds. The vibration region connected with protons and H-O bond in both types of membranes is found in Raman and IR spectra.

research product

Phase transitions and upconversion luminescence in oxyfluoride glass ceramics containing Ba4Gd3F17 nanocrystals

This is the peer reviewed version of the following article: G. Krieke, A. Sarakovskis, R. Ignatans, J. Gabrusenoks "Phase transitions and upconversion luminescence in oxyfluoride glass ceramics containing Ba4Gd3F17 nanocrystals", Journal of the European Ceramic Society, 2017, 37 (4), which has been published in final form at https://www.sciencedirect.com/science/article/abs/pii/S0955221916306768 This article may be used for non-commercial purposes in accordance with Elsevier Terms and Conditions for Sharing and Self-Archiving.

research product

Comparison of tritium measurement techniques for a laser cleaned JET tile

Abstract Over the last 7–8 years, two quantitative analyzing methods—accelerator mass spectrometry (AMS) and full combustion (FC) followed by scintillation detection have been applied for determining the tritium activity concentrations in JET divertor tiles. These methods have two main differences – the range of detection and the spatial resolution – and are thus complementary. However, these differences can also complicate the comparison of the two techniques for typical JET divertor samples. Therefore a cross comparison exercise for tritium measurements was performed between the two methods using specially produced identical standard samples. The cross comparison measurements were perform…

research product

Changes in structure and conduction type upon addition of Ir to ZnO thin films

Zn-Ir-O (Zn/Ir ≈ 1/1) thin films have been reported to be a potential p-type TCO material. It is, however, unknown whether it is possible to achieve p-type conductivity at low Ir content, and how the type and the magnitude of conductivity are affected by the film structure. To investigate the changes in properties taking place at low and moderate Ir content, this study focuses on the structure, electrical and optical properties of ZnO:Ir films with iridium concentration varying between 0.0 and 16.4 at.%. ZnO:Ir thin films were deposited on glass, Si, and Ti substrates by DC reactive magnetron co-sputtering at room temperature. Low Ir content (up to 5.1 at.%) films contain both a nano-crysta…

research product

Amorphous ultra-wide bandgap ZnOx thin films deposited at cryogenic temperatures

Crystalline wurtzite zinc oxide (w-ZnO) can be used as a wide band gap semiconductor for light emitting devices and for transparent or high temperature electronics. The use of amorphous zinc oxide (a-ZnO) can be an advantage in these applications. In this paper we report on X-ray amorphous a-ZnOx thin films (~500 nm) deposited at cryogenic temperatures by reactive magnetron sputtering. The substrates were cooled by a nitrogen flow through the copper substrate holder during the deposition. The films were characterized by X-ray diffraction (XRD), Raman, infrared, UV-Vis-NIR spectroscopies, and ellipsometry. The a-ZnOx films on glass and Ti substrates were obtained at the substrate holder temp…

research product

Comparative Ab Initio Calculations of ReO3, SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) Surfaces

We performed, for first time, ab initio calculations for the ReO2-terminated ReO3 (001) surface and analyzed systematic trends in the ReO3, SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) surfaces using first-principles calculations. According to the ab initio calculation results, all ReO3, SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) surface upper-layer atoms relax inwards towards the crystal bulk, all second-layer atoms relax upwards and all third-layer atoms, again, relax inwards. The ReO2-terminated ReO3 and ZrO2-terminated SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) surface band gaps at the &Gamma

research product

Electrophoretic Nanocrystalline Graphene Film Electrode for Lithium Ion Battery

Graphene sheets were fabricated by electrophoretic deposition method from water suspension of graphene oxide followed by thermal reduction. The formation of nanocrystalline graphene sheets has been confirmed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The electrochemical performance of graphene sheets as anode material for lithium ion batteries was evaluated by cycling voltammetry, galvanostatic charge-discharge cycling, and electrochemical impedance spectroscopy. Fabricated graphene sheets exhibited high discharge capacity of about 1120 mAhg−1 and demonstrated good reversibility of lithium intercalation and deintercalation in graphene sheet film with capacity…

research product

Environment Humidity Effect on the Weight of Carbonized Na-Al-Si Glass Fabrics Recovery after Heating

Na-Al-Si glass fabrics fibres contain Na+ ions that diffuse to its surface and along with CO2 and H2O from atmosphere create here the shell of carbonate hydrates. The heating of fabric leads to weight loss by evolving these substances. In this work the results of weight recovery study at room relative humidity (20% – 50%) and elevated humidity (near 70%) of fabrics after its heating at different temperatures (70°C – 150°C) are compared. The experiments shoved the different weight recovery kinetics. The initial exponential stages up to 0.3 h – 0.5 h of the both recoveries are associated with water absorption and differ by its levels. In a case of lower environment humidity the later weight i…

research product

Study the effects of moisture content on the electrical properties of technical textiles by impedance spectroscopy

Application of metal coatings for the functionalization of technical fibres and fabrics faced with influence of moisture on functional properties, e.g., the impedance of the metal coated K-glass fabrics have strong dependence of content absorbed water or moisture. The paper devoted to develop methodology for characterisation functional materials based on fabrics and model for interpretation of the electrical impedance spectra to obtained functional characteristics of technical textile fabrics. Model based on analyses of 3D plot of imaginary part of complex modulus spectra versus sample mass. Methodology helps to control content of adsorbed water in fabric and influence of moisture on the fu…

research product

IR Spectroscopy of Monoclinic Tungsten Oxide

Stoichiometric tungsten trioxide WO3 has several polimorphous crystal phases [1] in the temperature region from 4 up to 1200K. These WO3 phases have more or less distorted ReO3 — type crystal structures, and ReO3 lattice topology is identical to topology of the BO3 sublattice of perovskite ABO3.

research product