6533b82efe1ef96bd1293c34
RESEARCH PRODUCT
Cabut, a C2H2 zinc finger transcription factor, is required during Drosophila dorsal closure downstream of JNK signaling.
Nuria ParicioJavier TerolSilvia Muñoz-descalzosubject
animal structuresMorphogenesisBiologyCabutZinc fingerMorphogenesismedicineAnimalsDrosophila ProteinsDorsal closureYolk sacMolecular BiologyTranscription factorYolk nucleiCytoskeletonGeneticsZinc fingerEpidermis (botany)C2H2 Zinc FingerJNK Mitogen-Activated Protein KinasesZinc FingersCell BiologyDorsal closureCell biologymedicine.anatomical_structureDrosophila melanogasterEpidermal Cellsembryonic structuresMutationJNK cascadeDrosophilaJNKDevelopmental BiologySignal TransductionTranscription Factorsdescription
AbstractDuring dorsal closure, the lateral epithelia on each side of the embryo migrate dorsally over the amnioserosa and fuse at the dorsal midline. Detailed genetic studies have revealed that many molecules are involved in this epithelial sheet movement, either with a signaling function or as structural or motor components of the process. Here, we report the characterization of cabut (cbt), a new Drosophila gene involved in dorsal closure. cbt is expressed in the yolk sac nuclei and in the lateral epidermis. The Cbt protein contains three C2H2-type zinc fingers and a serine-rich domain, suggesting that it functions as a transcription factor. cbt mutants die as embryos with dorsal closure defects. Such embryos show defects in the elongation of the dorsal-most epidermal cells as well as in the actomyosin cable assembly at the leading edge. A combination of molecular and genetic analyses demonstrates that cbt expression is dependent on the JNK cascade during dorsal closure, and it functions downstream of Jun regulating dpp expression in the leading edge cells.
year | journal | country | edition | language |
---|---|---|---|---|
2005-11-01 | Developmental biology |