6533b82efe1ef96bd1293d8b

RESEARCH PRODUCT

Fast prototyping of a SoC-based smart-camera: a real-time fall detection case study

Julien DuboisBenaoumeur SenouciBarthélémy HeyrmanJohel MiteranImen Charfi

subject

Boosting (machine learning)Computer scienceReal-time computing02 engineering and technology[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]HW/SW implementationFast smart camera prototypingComputer graphicsReal-time fall detectionZynq0202 electrical engineering electronic engineering information engineering[ INFO.INFO-ES ] Computer Science [cs]/Embedded SystemsSmart cameraArchitectureComputingMilieux_MISCELLANEOUS[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingHome environmentbusiness.industryEfficient algorithm[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]SoC implementation020202 computer hardware & architectureEmbedded systemHardware accelerationBoosting hardware implementation[INFO.INFO-ES]Computer Science [cs]/Embedded Systems020201 artificial intelligence & image processingFall detectionbusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingInformation Systems

description

International audience; Smart camera, i.e. cameras that are able to acquire and process images in real-time, is a typical example of the new embedded computer vision systems. A key example of application is automatic fall detection, which can be useful for helping elderly people in daily life. In this paper, we propose a methodology for development and fast-prototyping of a fall detection system based on such a smart camera, which allows to reduce the development time compared to standard approaches. Founded on a supervised classification approach, we propose a HW/SW implementation to detect falls in a home environment using a single camera and an optimized descriptor adapted to real-time tasks. This heterogeneous implementation is based on Xilinx’s system-on-chip named Zynq. The main contributions of this work are (i) the proposal of a codesignmethodology. These methodologies enable the HW/SW partitioning to be delayed using high-level algorithmic description and high-level synthesis tools. Our approach enables fast prototyping which allows fast architecture exploration and optimisation to be performed, (ii) the design of a hardware accelerator dedicated to boostingbased classification, which is a very popular and efficient algorithm used in image analysis, (iii) the proposal of falldetection embedded in a smart camera and enabling integration into the elderly people environment. Performances of our system are finally compared to the state-of-the-art.

https://doi.org/10.1007/s11554-014-0456-4