6533b82ffe1ef96bd12947d0

RESEARCH PRODUCT

Prox1 Is Required for Oligodendrocyte Cell Identity in Adult Neural Stem Cells of the Subventricular Zone

Shima SafaiyanAthanasios StergiopoulosLaura Gonzalez CanoJens Christian SchwambornGökhan ErtaylanSandra VölsFelipe OrtegaFelipe OrtegaPanagiotis K. PolitisMikael SimonsMarianne Van CannBenedikt BerningerMaria Angeliki S. PavlouAntonio Del SolEva C. Bunk

subject

0301 basic medicineAdult neurogenesisMice0302 clinical medicineNeural Stem CellsCell MovementLateral VentriclesPromoter Regions GeneticCells CulturedMOUSE-BRAINReceptors NotchOligodendrocytesNeurogenesisCell DifferentiationLINEAGEAnatomyOlfactory BulbNeural stem cellCell biologyNeuroepithelial cellAdult Stem CellsOligodendrogliaDIFFERENTIATIONEnhancer Elements Geneticmedicine.anatomical_structureGene Knockdown TechniquesMolecular MedicineSPINAL-CORDStem cellSUBCELLULAR-LOCALIZATIONProtein BindingAdult stem cellOLIG2NeurogenesisSubventricular zoneBiology03 medical and health sciencesNeurosphereProx1medicineAnimalsCell LineageOLFACTORY-BULBBody PatterningHomeodomain ProteinsTumor Suppressor ProteinsCell BiologyMAMMALIAN BRAINOligodendrocyte Transcription Factor 2030104 developmental biologyNeuropoiesisPROGENITOR CELLSGene Expression Regulationnervous system030217 neurology & neurosurgeryDevelopmental Biology

description

Abstract Adult neural stem cells with the ability to generate neurons and glia cells are active throughout life in both the dentate gyrus (DG) and the subventricular zone (SVZ). Differentiation of adult neural stem cells is induced by cell fate determinants like the transcription factor Prox1. Evidence has been provided for a function of Prox1 as an inducer of neuronal differentiation within the DG. We now show that within the SVZ Prox1 induces differentiation into oligodendrocytes. Moreover, we find that loss of Prox1 expression in vivo reduces cell migration into the corpus callosum, where the few Prox1 deficient SVZ-derived remaining cells fail to differentiate into oligodendrocytes. Thus, our work uncovers a novel function of Prox1 as a fate determinant for oligodendrocytes in the adult mammalian brain. These data indicate that the neurogenic and oligodendrogliogenic lineages in the two adult neurogenic niches exhibit a distinct requirement for Prox1, being important for neurogenesis in the DG but being indispensable for oligodendrogliogenesis in the SVZ.

https://doi.org/10.1002/stem.2374