Isolation and Culture of Oligodendrocytes
Primary cultures of brain-derived rodent cells are widely used to study molecular and cellular mechanisms in neurobiology. In this chapter, we describe methods of purifying and culturing oligodendroglial cells from mouse perinatal brains. In addition, we describe methods of coculturing the purified oligodendrocytes with neurons. When prepared and cultured according to these protocols, many essential aspects of the biology of oligodendrocytes, such as their proliferation, differentiation, and myelination, can be studied in culture.
Oligodendrocytes Provide Antioxidant Defense Function for Neurons by Secreting Ferritin Heavy Chain.
An evolutionarily conserved function of glia is to provide metabolic and structural support for neurons. To identify molecules generated by glia and with vital functions for neurons, we used Drosophila melanogaster as a screening tool, and subsequently translated the findings to mice. We found that a cargo receptor operating in the secretory pathway of glia was essential to maintain axonal integrity by regulating iron buffering. Ferritin heavy chain was identified as the critical secretory cargo, required for the protection against iron-mediated ferroptotic axonal damage. In mice, ferritin heavy chain is highly expressed by oligodendrocytes and secreted by employing an unconventional secret…
Prox1 Is Required for Oligodendrocyte Cell Identity in Adult Neural Stem Cells of the Subventricular Zone
Abstract Adult neural stem cells with the ability to generate neurons and glia cells are active throughout life in both the dentate gyrus (DG) and the subventricular zone (SVZ). Differentiation of adult neural stem cells is induced by cell fate determinants like the transcription factor Prox1. Evidence has been provided for a function of Prox1 as an inducer of neuronal differentiation within the DG. We now show that within the SVZ Prox1 induces differentiation into oligodendrocytes. Moreover, we find that loss of Prox1 expression in vivo reduces cell migration into the corpus callosum, where the few Prox1 deficient SVZ-derived remaining cells fail to differentiate into oligodendrocytes. Thu…
Wrapping it up: the cell biology of myelination.
During nervous system development, oligodendroglia in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) synthesise large amounts of specific proteins and lipids to generate myelin, a specialised membrane that spirally ensheathes axons and facilitates fast conduction of the action potential. Myelination is initiated after glial processes have attached to the axon and polarisation of the plasma membrane has been triggered. Myelin assembly is a multi-step process that occurs in spatially distinct regions of the cell. We propose that assembly of myelin proteins and lipids starts during their transport through the biosynthetic pathway and continues at the …