6533b82ffe1ef96bd1294887

RESEARCH PRODUCT

A Comparative Study of Poly(Azure A) Film-Modified Disposable Electrodes for Electrocatalytic Oxidation of H₂O₂: Effect of Doping Anion.

María-isabel González-sánchezJerónimo AgrisuelasEdelmira ValeroBeatriz Gómez-monedero

subject

Polymers and PlasticsInorganic chemistryelectrochemical sensorhydrogen peroxideAzure A02 engineering and technologyOverpotential010402 general chemistryElectrocatalystElectrochemistrypoly(azure A)01 natural sciencesChlorideArticlelcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistrymedicinedisposable screen-printed electrodesconducting polymersConductive polymerChemistryconducting polymers; poly(azure A); sodium dodecyl sulfate; electrochemical sensor; disposable screen-printed electrodes; hydrogen peroxidePolyatomic ionGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesElectrochemical gas sensorsodium dodecyl sulfate0210 nano-technologymedicine.drug

description

In the present paper, poly(azure A) (PAA) films were electrosynthetized in the presence of different doping anions on disposable screen-printed carbon electrodes (SPCEs). The anions used included inorganic monoatomic (chloride and fluoride), inorganic polyatomic (nitrate and sulfate) and organic polyatomic (dodecyl sulfate, DS) species. The coated electrodes thus obtained were characterized by electrochemical techniques and SEM. They showed improved electrocatalytic activities towards hydrogen peroxide oxidation compared to that of a bare SPCE. In particular, the insertion of DS anions inside PAA films provided a special sensitivity to the electrocatalysis of H2O2, which endowed these electrodes with promising analytical features for H2O2 quantification. We obtained a wide linear response for H2O2 within a range of 5 µM to 3 mM and a limit of detection of 1.43 ± 0.10 µM (signal-to-noise ratio of 3). Furthermore, sensitivity was 72.4 ± 0.49 nA·µM−1∙cm−2 at a relatively low electrocatalytic oxidation overpotential of 0.5 V vs. Ag. The applicability of this boosted system was tested by the analysis of H2O2 in commercial samples of a hair lightener and an antiseptic and was corroborated by spectrophotometric methods.

10.3390/polym10010048https://pubmed.ncbi.nlm.nih.gov/30966084