6533b82ffe1ef96bd12948d2

RESEARCH PRODUCT

Nano-hybrids based on quercetin and carbon nanotubes with excellent anti-oxidant activity

Cristian GambarottiM. GuenziRossella ArrigoNadka Tzankova Dintcheva

subject

Materials scienceAntioxidantmedicine.medical_treatmentCarbon nanotubesNanoparticleCondensed Matter Physic02 engineering and technologyCarbon nanotube010402 general chemistry01 natural sciencesCarbon nanotubeRadical scavenging activityNanocompositeslaw.inventionchemistry.chemical_compoundlawNano-medicineMoleculeOrganic chemistryGeneral Materials ScienceUltra-high-molecular-weight polyethylenechemistry.chemical_classificationNanocompositeNanocompositeMechanical EngineeringOxidative degradationPolymer021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical scienceschemistryChemical engineeringMechanics of MaterialsCarbon nanotubes; Nanocomposites; Oxidative degradation; Quercetin; Radical scavenging activity; Materials Science (all); Condensed Matter Physics; Mechanics of Materials; Mechanical EngineeringQuercetinMaterials Science (all)0210 nano-technology

description

Abstract Multi-functional nano-hybrids based on Quercetin (Q), a natural antioxidant, and functionalized Carbon Nanotubes (CNTs) have been formulated and used to prepare Ultra High Molecular Weight PolyEthylene (UHMWPE)-based nanocomposites. The study of the nanocomposites rheological behaviour shows that the immobilization of Q molecules onto CNTs outer surface leads to a beneficial effect on the state of the interface between polymer and nanoparticles. Additionally, the investigation of the thermo- and photo-oxidation processes reveals that the hybrids nanoparticles are able to exert a remarkable stabilizing action, due to strong physical interaction between Q and CNTs. In particular, the presence of Q molecules causes the formation of CNTs structural defects, remarkably amplifying the intrinsic CNTs radical scavenging activity.

https://doi.org/10.1016/j.matlet.2016.05.096