6533b82ffe1ef96bd1294f24

RESEARCH PRODUCT

CostNet: An End-to-End Framework for Goal-Directed Reinforcement Learning

Morten GoodwinPer-arne AndersenOle-christoffer Granmo

subject

Artificial neural networkEnd-to-end principlebusiness.industryComputer scienceReinforcement learningSample (statistics)Markov decision processArtificial intelligenceEmpirical evidenceTrial and errorbusinessFeature learning

description

Reinforcement Learning (RL) is a general framework concerned with an agent that seeks to maximize rewards in an environment. The learning typically happens through trial and error using explorative methods, such as \(\epsilon \)-greedy. There are two approaches, model-based and model-free reinforcement learning, that show concrete results in several disciplines. Model-based RL learns a model of the environment for learning the policy while model-free approaches are fully explorative and exploitative without considering the underlying environment dynamics. Model-free RL works conceptually well in simulated environments, and empirical evidence suggests that trial and error lead to a near-optimal behavior with enough training. On the other hand, model-based RL aims to be sample efficient, and studies show that it requires far less training in the real environment for learning a good policy.

https://doi.org/10.1007/978-3-030-63799-6_7