6533b82ffe1ef96bd1295233
RESEARCH PRODUCT
Partitioned learning of deep Boltzmann machines for SNP data.
Stefan LenzMoritz HessHarald BinderHarald BinderLars BullingerTamara Jacqueline Blaettesubject
0301 basic medicineStatistics and ProbabilityComputer scienceMachine learningcomputer.software_genre01 natural sciencesBiochemistryPolymorphism Single NucleotideMachine Learning010104 statistics & probability03 medical and health sciencessymbols.namesakeJoint probability distributionHumans0101 mathematicsMolecular BiologyStatistical hypothesis testingArtificial neural networkbusiness.industryGene Expression Regulation LeukemicDeep learningUnivariateComputational BiologyManifoldComputer Science ApplicationsData setComputational Mathematics030104 developmental biologyComputingMethodologies_PATTERNRECOGNITIONComputational Theory and MathematicsLeukemia MyeloidBoltzmann constantsymbolsData miningArtificial intelligencebusinesscomputerSoftwareCurse of dimensionalitydescription
Abstract Motivation Learning the joint distributions of measurements, and in particular identification of an appropriate low-dimensional manifold, has been found to be a powerful ingredient of deep leaning approaches. Yet, such approaches have hardly been applied to single nucleotide polymorphism (SNP) data, probably due to the high number of features typically exceeding the number of studied individuals. Results After a brief overview of how deep Boltzmann machines (DBMs), a deep learning approach, can be adapted to SNP data in principle, we specifically present a way to alleviate the dimensionality problem by partitioned learning. We propose a sparse regression approach to coarsely screen the joint distribution of SNPs, followed by training several DBMs on SNP partitions that were identified by the screening. Aggregate features representing SNP patterns and the corresponding SNPs are extracted from the DBMs by a combination of statistical tests and sparse regression. In simulated case–control data, we show how this can uncover complex SNP patterns and augment results from univariate approaches, while maintaining type 1 error control. Time-to-event endpoints are considered in an application with acute myeloid leukemia patients, where SNP patterns are modeled after a pre-screening based on gene expression data. The proposed approach identified three SNPs that seem to jointly influence survival in a validation dataset. This indicates the added value of jointly investigating SNPs compared to standard univariate analyses and makes partitioned learning of DBMs an interesting complementary approach when analyzing SNP data. Availability and implementation A Julia package is provided at ‘http://github.com/binderh/BoltzmannMachines.jl’. Supplementary information Supplementary data are available at Bioinformatics online.
year | journal | country | edition | language |
---|---|---|---|---|
2016-12-20 | Bioinformatics (Oxford, England) |