6533b82ffe1ef96bd12952a5

RESEARCH PRODUCT

The $p\lambda n$ fractal decomposition: Nontrivial partitions of conserved physical quantities

Vladimir García-morales

subject

General MathematicsApplied MathematicsMathematical analysisGeneral Physics and AstronomyStatistical and Nonlinear PhysicsFractal landscape01 natural sciencesFractal analysis010305 fluids & plasmasFractalFractal derivative0103 physical sciencesFractal sequencePartition (number theory)010306 general physicsFinite setCondensed Matter - Statistical MechanicsMathematical PhysicsMathematicsPhysical quantity

description

A mathematical method for constructing fractal curves and surfaces, termed the $p\lambda n$ fractal decomposition, is presented. It allows any function to be split into a finite set of fractal discontinuous functions whose sum is equal everywhere to the original function. Thus, the method is specially suited for constructing families of fractal objects arising from a conserved physical quantity, the decomposition yielding an exact partition of the quantity in question. Most prominent classes of examples are provided by Hamiltonians and partition functions of statistical ensembles: By using this method, any such function can be decomposed in the ordinary sum of a specified number of terms (generally fractal functions), the decomposition being both exact and valid everywhere on the domain of the function.

10.1016/j.chaos.2015.11.028http://arxiv.org/abs/1505.02547