6533b82ffe1ef96bd1295329

RESEARCH PRODUCT

Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis

L. WangGiuseppe Arrabito

subject

BioanalysisMaterials scienceCell SurvivalProtein Array AnalysisNanowireNanoparticleAntineoplastic AgentsNanotechnologyBiosensing TechniquesBiochemistryAnalytical ChemistryNanomaterialsDNA nanotechnology biosensors DNA origamichemistry.chemical_compoundDNA nanotechnologyElectrochemistryEnvironmental ChemistrySpectroscopychemistry.chemical_classificationDrug CarriersBiomoleculeNucleic Acid HybridizationProteinsDNANanostructuresMicroRNAsNucleic Acid ProbeschemistryBiosensorDNA

description

We herein aim to report on the fabrication of DNA nano-heterostructures usable as a robust multi-functional analytical system to obtain multiple and complex data in parallel format from a single sample with unprecedented analytical performances. The ability of chemical information contained in the sequences of programmed DNA structures to organize matter made DNA become a unique material in “the nanoworld”. Such carefully designed DNA nanostructures can then be functionalized/templated with different biomolecules/nanomaterials as different as nanoparticles, nanowires, organic molecules, peptides, and proteins with controlled spacing on the nanometer scale (<10 nm). In this way, it is possible to combine the properties of both DNA and nanomaterials for exposing the designed functionality and customizable geometrical hetero-nanostructures. By coupling automated on-chip high yield DNA synthesis with low cost detection methods, DNA-nanotechnology can enable the realization of high-sensitivity, multiplexed bioanalytical assays for many different applications like diagnostics, drug screening, toxicology, immunology and biosensors.

https://doi.org/10.1039/c5an00861a