6533b82ffe1ef96bd1295339

RESEARCH PRODUCT

Enhancement and assessment of WKS variance parameter for intelligent 3D shape recognition and matching based on MPSO

Ichraf AouissaouiSeif Eddine NaffoutiFabrice MeriaudeauYohan FougerolleAnis Sakly

subject

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI][ INFO ] Computer Science [cs]Matching (graph theory)Feature vectorComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technology[INFO] Computer Science [cs][ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV][INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Kernel (linear algebra)[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Discriminative modelRobustness (computer science)0202 electrical engineering electronic engineering information engineeringFeature (machine learning)[INFO]Computer Science [cs][ INFO.INFO-AI ] Computer Science [cs]/Artificial Intelligence [cs.AI]ComputingMilieux_MISCELLANEOUSMathematicsbusiness.industryParticle swarm optimization[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020207 software engineeringPattern recognition020201 artificial intelligence & image processingArtificial intelligencebusinessEnergy (signal processing)

description

This paper presents an improved wave kernel signature (WKS) using the modified particle swarm optimization (MPSO)-based intelligent recognition and matching on 3D shapes. We select the first feature vector from WKS, which represents the 3D shape over the first energy scale. The choice of this vector is to reinforce robustness against non-rigid 3D shapes. Furthermore, an optimized WKS-based method for extracting key-points from objects is introduced. Due to its discriminative power, the associated optimized WKS values with each point remain extremely stable, which allows for efficient salient features extraction. To assert our method regarding its robustness against topological deformations, experiments show that the method is discriminative and robust to data perturbed by various noises. The algorithm is evaluated by its capability to differentiate between the salient feature points and to match efficiently between similar geometric structures for the same shape in different poses.

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01484140