6533b82ffe1ef96bd1295369

RESEARCH PRODUCT

Solvent hydrodynamics speed up crystal nucleation in suspensions of hard spheres

Marc RaduMarc RaduMarc RaduTanja Schilling

subject

Materials scienceStatistical Mechanics (cond-mat.stat-mech)Nucleation: Physics [G04] [Physical chemical mathematical & earth Sciences]General Physics and AstronomyThermodynamicsFOS: Physical sciencesHard spheresCondensed Matter - Soft Condensed Matterlaw.inventionSolventCrystalViscosity: Physique [G04] [Physique chimie mathématiques & sciences de la terre]lawScientific methodSoft Condensed Matter (cond-mat.soft)CrystallizationCondensed Matter - Statistical Mechanics

description

We present a computer simulation study on the crystal nucleation process in suspensions of hard spheres, fully taking into account the solvent hydrodynamics. If the dynamics of collodial crystallization were purely diffusive, the crystal nucleation rate densities would drop as the inverse of the solvent viscosity. However, we observe that the nucleation rate densities do not scale in this way, but are enhanced at high viscosities. This effect might explain the large discrepancy between the nuclation rate densities obtained by simulation and experiment that have reported in the literature so far.

http://orbilu.uni.lu/handle/10993/16543