6533b82ffe1ef96bd1295c31
RESEARCH PRODUCT
Nano into Micro Formulations of Tobramycin for the Treatment of Pseudomonas aeruginosa Infections in Cystic Fibrosis.
Barbara PorsioGennara CavallaroEmanuela Fabiola CraparoGaetano GiammonaDomenico SchillaciMaria Grazia Cusimanosubject
Tobramycin Cystic Fibrosis Artificial Mucus (CF-AM) αβ-poly-(N-2-hydroxyethyl)-DL-aspartamide (PHEA) ion pair complex nano into micro strategy Pseudomonas aeruginosa infections biofilmPolymers and PlasticsCystic FibrosisPolymersChemistry PharmaceuticalBioengineeringBronchi02 engineering and technologymedicine.disease_causeCystic fibrosisMicrobiologyBiomaterials03 medical and health sciences0302 clinical medicineDrug Delivery SystemsNano-Materials ChemistrymedicineTobramycinHumansPseudomonas InfectionsParticle SizeRespiratory Tract InfectionsCells CulturedDrug CarriersPseudomonas aeruginosaChemistryBiofilmDry Powder InhalersEpithelial Cells021001 nanoscience & nanotechnologyAntimicrobialmedicine.diseaseMucusPolyelectrolytesAnti-Bacterial Agents030228 respiratory systemSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoSpray dryingBiofilmsDelayed-Action PreparationsPseudomonas aeruginosaTobramycinNanoparticles0210 nano-technologymedicine.drugdescription
Here, nano into micro formulations (NiMs) of tobramycin for the treatment of Pseudomonas aeruginosa airway infections in cystic fibrosis (CF) are described. NiMs were produced by spray drying a solution containing polymers or sugars and a nanometric polyanion–tobramcyin complex (PTC), able to achieve a prolonged antibiotic release. NiMs properties were compared to TOBIPodhaler(Novartis), the only one commercially available dry powder inhalatory formulation based on porous microparticles. Produced NiMs showed adequate characteristics for pulmonary administration, as spherical shape, micrometric size, and high cytocompatibility toward human bronchial epithelial cells. Contrarily to TOBIPodhaler, some of produced NiMs, thanks to their specific chemical composition, are able to facilitate the drug diffusion through the mucus secretion, achieving, at the same time, a sustained tobramycin delivery. Moreover, NiMs showed pronounced antimicrobial activity against P. aeruginosa pathogens and their biofilm, if compared to free tobramycin and TOBIPodhaler, demonstrating the potential of obtained formulations as drug delivery systems for the treatment of pulmonary infections in CF patients.
year | journal | country | edition | language |
---|---|---|---|---|
2017-11-16 | Biomacromolecules |