6533b830fe1ef96bd12965af

RESEARCH PRODUCT

Strategies against nonsense: oxadiazoles as translational readthrough-inducing drugs (TRIDs)

Marco TutoneRaffaella MelfiAndrea PaceLaura LentiniIvana PibiriAmbra CampofeliceAldo Di Leonardo

subject

0301 basic medicinemedia_common.quotation_subjectNonsenseNonsense mutationRegulatorSettore BIO/11 - Biologia MolecolareReviewComputational biologyBiologyOxadiazoleCatalysiscystic fibrosislcsh:ChemistryInorganic Chemistry03 medical and health sciences0302 clinical medicineAtalurenTranslational readthrough inducing drugsPhysical and Theoretical Chemistrylcsh:QH301-705.5Molecular BiologyGeneSpectroscopymedia_commonNonsense mutationOrganic ChemistryTranslational readthroughoxadiazolesPremature termination codonTranslation (biology)General MedicineSettore CHIM/06 - Chimica OrganicaSmall moleculeSettore CHIM/08 - Chimica FarmaceuticaTransmembrane proteinComputer Science ApplicationsSettore BIO/18 - Genetica030104 developmental biologyPharmaceutical Preparationslcsh:Biology (General)lcsh:QD1-999Codon NonsenseProtein Biosynthesis030220 oncology & carcinogenesisCystic fibrosi

description

This review focuses on the use of oxadiazoles as translational readthrough-inducing drugs (TRIDs) to rescue the functional full-length protein expression in mendelian genetic diseases caused by nonsense mutations. These mutations in specific genes generate premature termination codons (PTCs) responsible for the translation of truncated proteins. After a brief introduction on nonsense mutations and their pathological effects, the features of various classes of TRIDs will be described discussing differences or similarities in their mechanisms of action. Strategies to correct the PTCs will be presented, particularly focusing on a new class of Ataluren-like oxadiazole derivatives in comparison to aminoglycosides. Additionally, recent results on the efficiency of new candidate TRIDs in restoring the production of the cystic fibrosis transmembrane regulator (CFTR) protein will be presented. Finally, a prospectus on complementary strategies to enhance the effect of TRIDs will be illustrated together with a conclusive paragraph about perspectives, opportunities, and caveats in developing small molecules as TRIDs.

10.3390/ijms20133329http://hdl.handle.net/10447/387836