Search results for "Codon"
showing 10 items of 196 documents
Pharmacophore-Based Design of New Chemical Scaffolds as Translational Readthrough-Inducing Drugs (TRIDs)
2020
[Image: see text] Translational readthrough-inducing drugs (TRIDs) rescue the functional full-length protein expression in genetic diseases, such as cystic fibrosis, caused by premature termination codons (PTCs). Small molecules have been developed as TRIDs to trick the ribosomal machinery during recognition of the PTC. Herein we report a computational study to identify new TRID scaffolds. A pharmacophore approach was carried out on compounds that showed readthrough activity. The pharmacophore model applied to screen different libraries containing more than 87000 compounds identified four hit-compounds presenting scaffolds with diversity from the oxadiazole lead. These compounds have been s…
Growth patterns and life-history strategies in Placodontia (Diapsida: Sauropterygia)
2015
Placodontia is a clade of durophagous, near shore marine reptiles from Triassic sediments of modern-day Europe, Middle East and China. Although much is known about their primary anatomy and palaeoecology, relatively little has been published regarding their life history, i.e. ageing, maturation and growth. Here, growth records derived from long bone histological data of placodont individuals are described and modelled to assess placodont growth and life-history strategies. Growth modelling methods are used to confirm traits documented in the growth record (age at onset of sexual maturity, age when asymptotic length was achieved, age at death, maximum longevity) and also to estimate undocum…
Comparative Mitogenomics of Leeches (Annelida: Clitellata): Genome Conservation and Placobdella-Specific trnD Gene Duplication.
2015
Mitochondrial DNA sequences, often in combination with nuclear markers and morphological data, are frequently used to unravel the phylogenetic relationships, population dynamics and biogeographic histories of a plethora of organisms. The information provided by examining complete mitochondrial genomes also enables investigation of other evolutionary events such as gene rearrangements, gene duplication and gene loss. Despite efforts to generate information to represent most of the currently recognized groups, some taxa are underrepresented in mitochondrial genomic databases. One such group is leeches (Annelida: Hirudinea: Clitellata). Herein, we expand our knowledge concerning leech mitochon…
Gene expression levels influence amino acid usage and evolutionary rates in endosymbiotic bacteria
2005
International audience; Most endosymbiotic bacteria have extremely reduced genomes, accelerated evolutionary rates, and strong AT base compositional bias thought to reflect reduced efficacy of selection and increased mutational pressure. Here, we present a comparative study of evolutionary forces shaping five fully sequenced bacterial endosymbionts of insects. The results of this study were three-fold: (i) Stronger conservation of high expression genes at not just nonsynonymous, but also synonymous, sites. (ii) Variation in amino acid usage strongly correlates with GC content and expression level of genes. This pattern is largely explained by greater conservation of high expression genes, l…
Evolutionary Changes after Translational Challenges Imposed by Horizontal Gene Transfer
2019
International audience; Genes acquired by horizontal gene transfer (HGT) may provide the recipient organism with potentially new functions, but proper expression level and integration of the transferred genes in the novel environment are not granted. Notably, transferred genes can differ from the receiving genome in codon usage preferences, leading to impaired translation and reduced functionality. Here, we characterize the genomic and proteomic changes undergone during experimental evolution of Escherichia coli after HGT of three synonymous versions, presenting very different codon usage preference, of an antibiotic resistance gene. The experimental evolution was conducted with and without…
Molecular and clinical studies in five index cases with novel mutations in the GLA gene
2016
Fabry disease is a metabolic and lysosomal storage disorder caused by the functional defect of the α-galactosidase A enzyme; this defect is due to mutations in the GLA gene, that is composed of seven exons and is located on the long arm of the X-chromosome (Xq21–22). The enzymatic deficit is responsible for the accumulation of glycosphingolipids in lysosomes of different cellular types, mainly in those ones of vascular endothelium. It consequently causes a cellular and microvascular dysfunction. In this paper, we described five novel mutations in the GLA gene, related to absent enzymatic activity and typical manifestations of Fabry disease. We identified three mutations (c.846_847delTC, p.E…
Incomplete Timothy syndrome secondary to a mosaic mutation of the CACNA1C gene diagnosed using next-generation sequencing.
2016
Autosomal dominant genetic diseases can occur de novo and in the form of somatic mosaicism, which can give rise to a less severe phenotype, and make diagnosis more difficult given the sensitivity limits of the methods used. We report the case of female child with a history of surgery for syndactyly of the hands and feet, who was admitted at 6 years of age to a pediatric intensive care unit following cardiac arrest. The electrocardiogram (ECG) showed a long QT interval that on occasions reached 500 ms. Despite the absence of facial dysmorphism and the presence of normal psychomotor development, a diagnosis of Timothy syndrome was made given the association of syndactyly and the ECG features.…
Discovering new proteins in plant mitochondria by RNA editing simulation
2016
In plant mitochondria an essential mechanism for gene expression is RNA editing, often influencing the synthesis of functional proteins. RNA editing alters the linearity of genetic information transfer. Indeed it causes differences between RNAs and their coding DNA sequences that hinder both experimental and computational research of genes. Therefore common software tools for gene search, successfully applied to find canonical genes, often fail in discovering genes encrypted in the genome of plants. Here we propose a novel strategy useful to identify candidate coding sequences resulting from possible editing substitutions. In particular, we consider c!u substitutions leading to the creation…
ABO blood group A transferase and its codon 69 substitution enzymes synthesize FORS1 antigen of FORS blood group system
2019
AbstractHuman histo-blood group A transferase (AT) catalyzes the biosynthesis of oligosaccharide A antigen important in blood transfusion and cell/tissue/organ transplantation. This enzyme may synthesize Forssman antigen (FORS1) of the FORS blood group system when exon 3 or 4 of the AT mRNA is deleted and/or the LeuGlyGly tripeptide at codons 266–268 of AT is replaced by GlyGlyAla. The Met69Ser/Thr substitutions also confer weak Forssman glycolipid synthase (FS) activity. In this study, we prepared the human AT derivative constructs containing any of the 20 amino acids at codon 69 with and without the GlyGlyAla substitution, transfected DNA to newly generated COS1(B3GALNT1 + A4GALT) cells e…
Sequential cleavage of the proteins encoded by HNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, results in products acting…
2017
This study provides first insights into the biosynthesis, structure, biochemistry and complex processing of the proteins encoded by hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID (NOT) and the yeast asparagine linked glycosylation 3 gene (ALG3), which encodes a mannosyltransferase. Unambiguous evidence that both the fly and human proteins act as mannosyltransferases has not been provided yet. Previously, we showed that hNOT/ALG3 encodes two alternatively spliced main transcripts, hNOT-1/ALG3-1 and hNOT-4/ALG3-4, and their 15 truncated derivatives that lack diverse sets of exons and/or carry point mutations that result in premature termination codons. Here we show that t…