6533b830fe1ef96bd129663f
RESEARCH PRODUCT
Evidence for marine biogenic influence on summertime Arctic aerosol
Jonathan P. D. AbbattAmir A. AliabadiMegan D. WillisJennie L. ThomasJohannes SchneiderW. Richard LeaitchHeiko BozemAndreas HerberPeter HoorJulia BurkartFranziska KöllnerHannes Schulzsubject
010504 meteorology & atmospheric sciencesmethanesulfonic acidchemistry.chemical_element010501 environmental sciencesAtmospheric sciences01 natural sciencesMethanesulfonic acidArctic aerosolchemistry.chemical_compoundmarine organic aerosolCloud condensation nucleiSulfateSea salt aerosol0105 earth and related environmental sciences[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphereaerosol mass spectrometrySulfurArctic summerAerosolGeophysicsArcticchemistry13. Climate actionGeneral Earth and Planetary SciencesAerosol mass spectrometryEnvironmental sciencesecondary organic aerosoldescription
International audience; We present vertically-resolved observations of aerosol composition during pristine summertime Arctic background conditions. The methansulfonic acid (MSA)-to-sulfate ratio peaked near the surface (mean 0.10), indicating a contribution from ocean-derived biogenic sulfur. Similarly, the organic aerosol (OA)-to-sulfate ratio increased towards the surface (mean 2.0). Both MSA-to-sulfate and OA-to-sulfate ratios were significantly correlated with FLEXPART-WRF-predicted airmass residence time over open water, indicating marine influenced OA. External mixing of sea salt aerosol from a larger number fraction of organic, sulfate and amine-containing particles, together with low wind speeds (median 4.7 m s−1), suggests a role for secondary organic aerosol formation. Cloud condensation nuclei concentrations were nearly constant (∼120 cm−3) when the OA fraction was −3 when the organic fraction was larger and residence times over open water were longer. Our observations illustrate the importance of marine-influenced OA under Arctic background conditions, which are likely to change as the Arctic transitions to larger areas of open water.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 |