0000000000082804

AUTHOR

Andreas Herber

Summertime observations of ultrafine particles and cloud condensation nuclei from the boundary layer to the free troposphere in the Arctic

Abstract. The Arctic is extremely sensitive to climate change. Shrinking sea ice extent increases the area covered by open ocean during Arctic summer, which impacts the surface albedo and aerosol and cloud properties among many things. In this context extensive aerosol measurements (aerosol composition, particle number and size, cloud condensation nuclei, and trace gases) were made during 11 flights of the NETCARE July, 2014 airborne campaign conducted from Resolute Bay, Nunavut (74N, 94W). Flights routinely included vertical profiles from about 60 to 3000 m a.g.l. as well as several low-level horizontal transects over open ocean, fast ice, melt ponds, and polynyas. Here we discuss the vert…

research product

Ship emissions measurement in the Arctic from plume intercepts of the Canadian Coast Guard <i>Amundsen</i> icebreaker from the <i>Polar 6</i> aircraft platform

Abstract. Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols) campaign, the plume dispersion and gas and particle emission factors of emissions originating from the Canadian Coast Guard Amundsen icebreaker operating near Resolute Bay, NU, Canada have been investigated. The Amundsen burnt d…

research product

Modelling Regional Air Quality in the Canadian Arctic: Simulation of an Arctic Summer Field Campaign

Model simulations of an Arctic summer field campaign were carried out. The model results were compared with observational data from both ground-based monitoring and in situ measurements on-board multiple mobile platforms. The model was able to well capture regional sources and transport affecting the Arctic air quality. It is shown that the study area was impacted by North American (NA) regional biomass burning emissions. The model-observation comparison also corroborates previous findings on possible roles of marine-biogenic sources in aerosol production in the Arctic MBL during summertime.

research product

Aircraft-based measurements of High Arctic springtime aerosol show evidence for vertically varying sources, transport and composition

The sources, chemical transformations and removal mechanisms of aerosol transported to the Arctic are key factors that control Arctic aerosol–climate interactions. Our understanding of sources and processes is limited by a lack of vertically resolved observations in remote Arctic regions. We present vertically resolved observations of trace gases and aerosol composition in High Arctic springtime, made largely north of 80∘ N, during the NETCARE campaign. Trace gas gradients observed on these flights defined the polar dome as north of 66–68∘ 30′ N and below potential temperatures of 283.5–287.5 K. In the polar dome, we observe evidence for vertically varying source…

research product

New insights into aerosol and climate in the Arctic

Abstract. Motivated by the need to predict how the Arctic atmosphere will change in a warming world, this article summarizes recent advances made by the research consortium NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) that contribute to our fundamental understanding of Arctic aerosol particles as they relate to climate forcing. The overall goal of NETCARE research has been to use an interdisciplinary approach encompassing extensive field observations and a range of chemical transport, earth system, and biogeochemical models. Several major findings and advances have emerged from NETCARE since its formation in 2013 . (1) Unexpectedly …

research product

Technical note: sea salt interference with black carbon quantification in snow samples using the single particle soot photometer

After aerosol deposition from the atmosphere, black carbon (BC) takes part in the snow albedo feedback contributing to the modification of the Arctic radiative budget. With the initial goal of quantifying the concentration of BC in the Arctic snow and subsequent climatic impacts, snow samples were collected during the research vessel (R/V) Polarstern expedition of PASCAL (Physical Feedbacks of Arctic Boundary Layer, Sea Ice, Cloud and Aerosol; Polarstern cruise 106) in the sea-ice-covered Fram Strait in early summer 2017. The refractory BC (rBC) content was then measured in the laboratory of the Alfred Wegener Institute with the single particle soot photometer (SP2). Based on the strong obs…

research product

Evidence for marine biogenic influence on summertime Arctic aerosol

International audience; We present vertically-resolved observations of aerosol composition during pristine summertime Arctic background conditions. The methansulfonic acid (MSA)-to-sulfate ratio peaked near the surface (mean 0.10), indicating a contribution from ocean-derived biogenic sulfur. Similarly, the organic aerosol (OA)-to-sulfate ratio increased towards the surface (mean 2.0). Both MSA-to-sulfate and OA-to-sulfate ratios were significantly correlated with FLEXPART-WRF-predicted airmass residence time over open water, indicating marine influenced OA. External mixing of sea salt aerosol from a larger number fraction of organic, sulfate and amine-containing particles, together with lo…

research product

The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification

A consortium of polar scientists combined observational forces in a field campaign of unprecedented complexity to uncover the secrets of clouds and their role in Arctic amplification. Two research aircraft, an icebreaker research vessel, an ice-floe camp including an instrumented tethered balloon, and a permanent ground-based measurement station were employed in this endeavour. Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, surfa…

research product

Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker <i>Amundsen</i> from the <i>Polar 6</i> aircraft platform

Abstract. Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols) campaign, the plume dispersion and gas and particle emission factors of effluents originating from the Canadian Coast Guard icebreaker Amundsen operating near Resolute Bay, NU, Canada, were investigated. The Amundsen burned dist…

research product

Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements

The springtime composition of the Arctic lower troposphere is to a large extent controlled by the transport of midlatitude air masses into the Arctic. In contrast, precipitation and natural sources play the most important role during summer. Within the Arctic region sloping isentropes create a barrier to horizontal transport, known as the polar dome. The polar dome varies in space and time and exhibits a strong influence on the transport of air masses from midlatitudes, enhancing transport during winter and inhibiting transport during summer. We analyzed aircraft-based trace gas measurements in the Arctic from two NETCARE airborne field campaigns (July 2014 and April 2015) with the Alfred W…

research product

Airborne survey of trace gases and aerosols over the Southern Baltic Sea: from clean marine boundary layer to shipping corridor effect

The influence of shipping on air quality over the Southern Baltic Sea was investigated by characterizing the horizontal and vertical distribution of aerosols and trace gases using airborne measurements in the summer of 2015. Generally, continental and anthropogenic emissions affected the vertical distribution of atmospheric pollutants, leading to pronounced stratification in and above the marine boundary layer and controlling the aerosol extinction. Marine traffic along the shipping corridor “Kadet Fairway” in the Arkona Basin is shown to influence the presence and properties of both trace gases and aerosol particles in the lowest atmospheric layer. Total particle number concentration and N…

research product

Airborne observations of far-infrared upwelling radiance in the Arctic

Abstract. The first airborne measurements of the Far-InfraRed Radiometer (FIRR) were performed in April 2015 during the panarctic NETCARE campaign. Vertical profiles of spectral upwelling radiance in the range 8–50 μm were measured in clear and cloudy conditions from the surface up to 6 km. The clear-sky profiles highlight the strong dependence of radiative fluxes to the temperature inversion typical of the Arctic. Measurements acquired for total column water vapor from 1.5 to 10.5 mm also underline the sensitivity of the far-infrared greenhouse effect to specific humidity. The cloudy cases show that optically thin ice clouds increase the cooling rate of the atmosphere by a factor up to thr…

research product

Effects of 20–100 nm particles on liquid clouds in the clean summertime Arctic

Abstract. Observations addressing effects of aerosol particles on summertime Arctic clouds are limited. An airborne study, carried out during July 2014 from Resolute Bay, Nunavut, Canada, as part of the Canadian NETCARE project, provides a comprehensive in situ look into some effects of aerosol particles on liquid clouds in the clean environment of the Arctic summer. Median cloud droplet number concentrations (CDNC) from 62 cloud samples are 10 cm−3 for low-altitude cloud (clouds topped below 200 m) and 101 cm−3 for higher-altitude cloud (clouds based above 200 m). The lower activation size of aerosol particles is  ≤  50 nm diameter in about 40 % of the cases. Particles as small as 20 nm ac…

research product

A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign

The Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign was carried out north-west of Svalbard (Norway) between 23 May and 6 June 2017. The objective of ACLOUD was to study Arctic boundary layer and mid-level clouds and their role in Arctic amplification. Two research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open ocean and closed sea ice. Both aircraft were equipped with identical instrumentation for measurements of basic meteorological parameters, as well as for turbulent and radiative energy fluxes. In addition, on Polar 5 active and passive remote sensing instruments were installed, while Polar 6 …

research product

Chemical composition and source attribution of sub-micrometre aerosol particles in the summertime Arctic lower troposphere

Aerosol particles impact the Arctic climate system both directly and indirectly by modifying cloud properties, yet our understanding of their vertical distribution, chemical composition, mixing state, and sources in the summertime Arctic is incomplete. In situ vertical observations of particle properties in the high Arctic combined with modelling analysis on source attribution are in short supply, particularly during summer. We thus use airborne measurements of aerosol particle composition to demonstrate the strong contrast between particle sources and composition within and above the summertime Arctic boundary layer. In situ measurements from two complementary aerosol mass spectrometers, t…

research product