6533b830fe1ef96bd12968dc

RESEARCH PRODUCT

From “Cellular” RNA to “Smart” RNA: Multiple Roles of RNA in Genome Stability and Beyond

Giuseppe BiamontiBrian LukePiero CarninciJulio AguadoZachary Thomas NeebChance MeersAmeya P. JalihalNils G. WalterMariusz NowackiFrancesca RossielloFlavia MicheliniFabrizio D'adda Di FagagnaUbaldo GioiaCorey Winston Jones-weinertFrancesca StoriciSofia Francia

subject

0301 basic medicineGenome instabilityRegulation of gene expressionRNA UntranslatedTranscription GeneticChemistryRNA-Binding ProteinsRNARNA-binding proteinGeneral ChemistryComputational biologyNon-coding RNAArticleGenomic Instability03 medical and health sciences030104 developmental biologyGene Expression RegulationTranscription (biology)RNA interferenceGene expressionHumans570 Life sciences; biologyDNA Breaks Double-StrandedRNA InterferenceDNA Damage

description

Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.

https://dx.doi.org/10.7892/boris.114125